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1 - Orbital parameters and their climate impact on the northern and the southern
hemispheres

1 - cyclical changes of orbital eccentricity, axial inclination, axial precession and northern
summer insolation
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2 - changes of solar radiation by season (20-0 ka BP)

Solar radiation changes vs today
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3 - evolution of axial inclination from 24.5to 22.1 degrees (10.3-0 ka BP)
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4 - evolution of summer and winter insolation of N-hemisphere (20-0 ka BP)
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5 - evolution of solar radiation and average global temperature (T) (20-0 ka BP)
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6 - Thermo-Haline Circulation (THC) or Ocean Conveyor Belt
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8 - cyclical Bond events in the N-Atlantic (10-0 ka BP)
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9 - evolution of total insolation (red) and max summer insolation at the N pole (blue) and S

pole (dashed)
(140-0 ka BP)
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10 - Northern hemisphere: evolution of T (10-0 ka BP)
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11 - Southern hemisphere: evolution of T (10-0 ka BP)

(climate optimum retarded to 7.8 ka BP, with 2.5 degrees less anomalies than in N-hemisphere)
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12

Northern and Southern Hemispheres: changes in insolation (black) and glacial volumes
(red) (10-0 ka BP)
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2 - Evolution of Southern American and Peruvian landscapes from the Last Glacial
Maximum to the Early Holocene (18-6 ka BP)

13 - South America (LGM, 18 ka BP) : differential T values from present
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14 - South America (LGM, 18 ka BP) : differential runoff indices from present
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15 - South America (LGM, 18 ka BP) : environmental aridity
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16 - South America (before 12 ka BP): minor environmental amelioration

12,000 radiocarbon years ago
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17 - South America (Younger Dryas (12 ka BP): :environmental reversal

11,000 radiocarbon years ago
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18 - South America (9.5-8.0 ka): Holocene climate optimum

9,000 radiocarbon years ago
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19 - South America (6 ka BP): : full recovery of vegetation
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3 - Evolution of Temperature and Precipitation in the Peruvian region during the

Holocene (10.3-0 BP)

3.1 — Temperature

20 - Southern hemisphere: evolution of T (10-0 ka BP)

(climate optimum retarded to 7.8 ka BP, with 2.5 degrees less anomalies than in N-hemisphere)
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Late Holocene : Mid Holocene ' Early Holocene

21 - Homogeneous d180 in four " 5 g " g | m
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22 —Shatuca ice core (N-Andes) and Bond cycles

Warming T and ice depletion in antiphase with cold Bond events in N-Atlantic (graphic detrended of
the trend of increasing insolation at the southern hemisphere).
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3.1 — Precipitation

23 - Southern America: scheme of atmospheric circulation patterns from the Atlantic ocean
Impact of the South Atlantic Convergence Zone (SACZ) and Southern American Low Level Jet (SALLJ)
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24 - Walker cell atmospheric circulation under normal and ENSO (EI-Nino) modes

and thermoclines
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Fig.11 Idealized schematic diagram reflecting the ENSO
Phenomenon. Normal non-ENSO conditions are shown
above, while a the climax of a ENSO event is pictured
below. In either cases both the slope of the sea level as
well as the thermocline change considerably.




25 - scheme of positive ENSO (EI-Nino) mode

Peruvian
Fig.14 Upon the advent of an ENSO event, the pressure over the eastern and western
Pacific flip-flops. This causes the trade winds to diminish, leading to an eastward
movement of warm water along the equator. As a result, the surface waters of the
central and eastern Pacific warm, with far-reaching consequences to weather pattems.




26 - evolution of frequency of EI-Nino events (10-0 ka BP)
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27 - Andes: evolution of P during 12-0 ka BP (Hammerly 2010)

Precipitation in the Andes during the Holocene
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28 - evolution of water level of the Titicaca lake (14-1 ka)
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29 - evolution of Andean forest pollen and EI-Nino events (12-0 ka BP)
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30 — Peruvian Andes: summary graphic of evolution of T, P

and lake water levels (11-0 ka BP)
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4 - Climate and cultures in Peru during the Ceramic period (3.9-0.5 ka BP)

31 — Evolution of Precipitation during the Ceramic period
(4.0-0 ka BP)
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32 - Quelccaya ice cap: evolution of total particles (winds), conductivity, d180

and ice accumulation (1.7-0 ka BP)

Records of Global Climate 87

QUELCCAYA ICE CAP, PERU, 1983
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Fig. 2. Profiles of decadal averages from AD 470 to 1980 of total particles (2 0.63 to <16.0
pm in diameter per ml of sample x 10%), conductivity, 8'%0 and net accumulation (meters of
ice equivalent). The dust events of AD 920 and 600 are dominant in the microparticle and
conductivity profiles.




33 - evolution of Quelccaya ice cap, S and N coastal cultures and altiplano cultures
during 1. 5-0 BP
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34 - evolution of Quelccaya ice cap, S highland cultures and S and N coastal cultures
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Fig. 3. Decadal accumulation trends in meters of ice presented as a composite of core 1 and
summit core records. Wet and dry periods are indicated. On the right the periods of the rise
and fall of coastal and highland cultures of Ecuador and Peru are indicated (taken mainly
from Paulsen, 1976).




35 - Ica (Nazca): evolution of settlement patterns between 3.0-0.4 BP
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