Show simple item record

dc.contributor.authorSalzmann, Nadine
dc.contributor.authorHuggel, Christian
dc.contributor.authorRohrer, M.
dc.contributor.authorSilverio, Walter
dc.contributor.authorMark, Bryan G.
dc.contributor.authorBurns, P.
dc.contributor.authorPortocarrero Lau, Cristina
dc.identifier.citationSalzmann, N., Huggel, C., Rohrer, M. et. al. (2013) Glacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, southern Peruvian Andes. The Cryosphere, 7, 103-118. doi:
dc.identifier.issnISSN: 1994-0416, ESSN: 1994-0424es_PE
dc.descriptionOriginal abstract: The role of glaciers as temporal water reservoirs is particularly pronounced in the (outer) tropics because of the very distinct wet/dry seasons. Rapid glacier retreat caused by climatic changes is thus a major concern, and decision makers demand urgently for regional/local glacier evolution trends, ice mass estimates and runoff assessments. However, in remote mountain areas, spatial and temporal data coverage is typically very scarce and this is further complicated by a high spatial and temporal variability in regions with complex topography. Here, we present an approach on how to deal with these constraints. For the Cordillera Vilcanota (southern Peruvian Andes), which is the second largest glacierized cordillera in Peru (after the Cordillera Blanca) and also comprises the Quelccaya Ice Cap, we assimilate a comprehensive multi-decadal collection of available glacier and climate data from multiple sources (satellite images, meteorological station data and climate reanalysis), and analyze them for respective changes in glacier area and volume and related trends in air temperature, precipitation and in a more general manner for specific humidity. While we found only marginal glacier changes between 1962 and 1985, there has been a massive ice loss since 1985 (about 30% of area and about 45% of volume). These high numbers corroborate studies from other glacierized cordilleras in Peru. The climate data show overall a moderate increase in air temperature, mostly weak and not significant trends for precipitation sums and probably cannot in full explain the observed substantial ice loss. Therefore, the likely increase of specific humidity in the upper troposphere, where the glaciers are located, is further discussed and we conclude that it played a major role in the observed massive ice loss of the Cordillera Vilcanota over the past decades.es_PE
dc.descriptionArtículo en acceso abiertoes_PE
dc.description.abstractAborda el papel de los glaciares como reservorios temporales de agua y muestra las tendencias de evolución de los glaciares regionales / locales, las estimaciones de la masa de hielo y las evaluaciones de escorrentía con relación a la Cordillera Vilcanota en el sur de los Andes peruanos.es_PE
dc.relation.ispartofseriesThe Cryosphere, 2013, Volumen 7, pp 103-118es_PE
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.sourceAutoridad Nacional del Aguaes_PE
dc.sourceRepositorio institucional - ANAes_PE
dc.subjectCambio climáticoes_PE
dc.subjectConservación de glaciareses_PE
dc.subjectMonitoreo de lagunas y glaciareses_PE
dc.titleGlacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, southern Peruvian Andeses_PE
dc.coverage.basinCuenca Urubamba

Files in this item


This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess