

REPUBLICA DEL PERU

MINISTERIO DE AGRICULTURA

INSTITUTO NACIONAL DE RECURSOS NATURALES INRENA

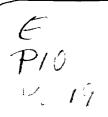
DIRECCION GENERAL DE ESTUDIOS Y PROYECTOS DE RECURSOS NATURALES

AUTORIDAD NACIONAL DEL AGUA

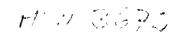
ESTUDIO DE PROSPECCION GEOFISICA CON FINES DE INVESTIGACION HIDROGEOLOGICA EN EL DISTRITO LA MATANZA FUNDO AGRÍCOLA GANADERA PALO VERDE VALLE DEL ALTO PIURA

E P10 P6M9

Lima, Marzo del 2000



. •		N.	
BIB	LIGI	৮ 😘 🗛	
edenc a	 Aller Stein Beginn Speinsch 		
<i>.</i> *50.	007	130	
113.			


AUTORIDAD NACIONAL DEL AGUA

MINISTERIO DE AGRICULTURA

INSTITUTO NACIONAL DE RECURSOS NATURALES

INRENA-

PERSONAL DIRECTIVO

Dra. Josefina Takahashi Sato : Jefa del INRENA

Ing. CIP. David Gaspar Velásquez : Director General de Estudios y

Proyectos de Recursos Naturales

Ing. CIP. Justo Salcedo Baquerizo : Director de Gestión de Proyectos

PERSONAL PARTICIPANTE

Ing. CIP. Jorge Montoya Mendoza : Profesional Especialista

Ing. Enrique Medina Martinez : Profesional Especialista

Tec. Luis Vigil Deza : Dibujante

Sra. Ana María Orbegoso : Secretaria Ejecutiva

INDICE

			<u>Pág.</u>
1.	INTRODUCCIO 1.1 Antecedente		1 1
2.	OBJETO DEL I	ESTUDIO	1
3.	UBICACIÓN Y	ACCESO DEL ÁREA DE ESTUDIO	1
4.	PROSPECCIÓ N 4.1 Antecedente		2 2
5.	5.1 Fundamento	FÍSICO EMPLEADO o del Método ondaje Eléctrico Vertical	2 2 2
6.	EQUIPO GEOE	LECTRICO UTILIZADO	3
<i>7</i> .	TRABAJO DE C	CAMPO	3
8.	TRABAJO DE O	SABINETE	3
9.	9.1 Tipos de Cu	TÓN CUANTITATIVA rvas de los SEV's para el Área de Estudio pica del Acuífero del Area en Estudio	4 4 4
10.	RESULTADOS 10.1 Columna Lii	tológica	5 6
11.	LOCALIZACIO	N DE LOS POZOS PROYECTADOS	7
12.	DISEÑO PRELI 12.1 Diseño Físic	MINAR DE LOS POZOS co de los Pozos	7 7
13.	CONCLUSIONE	ES	9
<i>14</i> .	RECOMENDAC	CIONES	10
		RELACION DE CUADROS	
	Cuadro N°1	Resultados de la Interpretación Cuantitativa de los Son Eléctricos Verticales	odajes
		ANEXOS	
	ANEXO I :	Relación de Figuras	

ESTUDIO DE PROSPECCION GEOFISICA CON FINES DE INVESTIGACION HIDROGEOLOGICA EN EL DISTRITO LA MATANZA FUNDO AGRÍCOLA GANADERA PALO VERDE VALLE DEL ALTO PIURA

1.0 INTRODUCCION

1.1 Antecedentes

La presente investigación de Prospección Geofísica con fines hidrogelógicos, fue realizado por el Instituto Nacional de Recursos Naturales INRENAi, a solicitud del señor Boris Rabinovich, representante de los beneficiarios del Fundo Agrícola Ganadera Palo Verde del Valle del Alto Piura en dos etapas; una primera en abril de 1999, y la segunda ejecutada en el mes de marzo del presente año, con la finalidad definir un punto favorable dentro de su propiedad para la ubicación de una nueva perforación de un pozo tubular.

El estudio Geofísico responde a la necesidad de contar con el recurso hídrico suficiente que permita ampliar la frontera agrícola, elevar la producción y la productividad agropecuaria del mencionado Fundo, ubicado en el distrito de La Matanza.

AUTORIDAD NACIONAL DEL AGUA

2.0 OBJETO DEL ESTUDIO

La Prospección Geofísica se efectuó con el siguiente objetivo:

- Evaluar y determinar indirectamente la granulometría y espesor de las diferentes capas del subsuelo, cuyas características correspondan a acuíferos reciente o antiguos, que nos permita determinar las posibilidades de explotación del reservorio acuífero y definir la ubicación más conveniente de nuevas fuentes de captación de aguas subterráneas para uso múltiple.
- Evaluar el grado de mineralización del agua subterránea, en función a la salinidad.

3.0 UBICACION Y ACCESO DEL AREA DE ESTUDIO

El área de estudio se encuentra localizada en el valle del alto Piura, Políticamente pertenece al distrito de La Matanza, provincia de Morropón departamento de Piura, Región Piura.

La principal vía de acceso al área de estudio es factible a través de la antigua carretera de la panamericana norte, antes del kilómetro 65 hay un desvió mediante una carretera asfaltada con dirección al distrito de La Matanza lugar donde se ubica dicha área de estudio.

Geográficamente se circunscribe dentro de las siguientes coordenadas, ubicada entre las coordenadas UTM.

Por el Norte: de 9 421 153 a 9 422 562 m
 Por el Este: de 601 520 a 602 499 m

4.0 PROSPECCION GEOFISICA

4.1 Antecedentes

Debido a que en un estudio hidrogeológico, generalmente las evidencias geológicas superficiales no bastan para una mejor compresión de las propiedades acuíferas y de los materiales que existen debajo de la superficie, es necesaria la realización de una adecuada investigación geofísica orientada a proporcionar información del área más favorables para la captación de las aguas subterráneas.

5.0 METODO GEOFÍSICO EMPLEADO

El método empleado fue el de resistividad eléctrica en su variante sondaje eléctrico vertical (SEV). Utilizando la configuración tetraelectródica Schlumberger. Simétrico lineal (AM-BN). Este dispositivo es de amplio uso en los estudios Hidrogeológicos.

5.1 Fundamento del Método

Los principios de la prospección geoeléctrica son aplicados desde hace mucho tiempo a la hidrogeología para determinar la geometría del subsuelo.

El agua contenida en los poros de las rocas de los suelos es el elemento fundamental de las medidas de la resistividad, los diferentes horizontes están diferenciados gracias al contenido del agua y la mineralización de las mismas.

5.2 Teoría del Sondaje Eléctrico Vertical

El sondaje eléctrico vertical, permite evaluar a partir de la superficie del terreno y en dirección perpendicular a ella, la distribución de las diferentes capas geoeléctricas, es decir permite determinar los valores de resistividad y espesor correspondiente a cada capa. En el SEV se introduce corriente continua al terreno mediante un par de electrodos de emisión, colocados en la parte externa A-B, donde en su recorrido radial desde cada punto de emisión experimentan una caída de tensión acordes con los factores condicionantes como humedad, textura del medio, grado de mineralización, temperatura y otros. Es como esta caída de tensión creada es recepcionada

en otro par de electrodos internos M-N, donde las medidas sucesivas parten de un punto cero, en forma ascendente y lineal.

Los datos de resistividad aparente, obtenidos en los SEVs, se representan mediante una curva, graficada en un formato bilogarítmico. Donde a través de diversos métodos de interpretación se determinan los valores de las resistividades verdaderas y sus espesores para las diferentes capas en estudio, para cada punto de investigación.

6.0 EQUIPO GEOELECTRICO UTILIZADO

El equipo de prospección geoeléctrica estuvo constituido por:

- Un equipo Soil test R-60 DC conformado por dos unidades de lectura de fabricación Americana.
- Como parte de equipo se contó con dos (2) carretes (bobinas) con cables de baja resistencia eléctrica aptos para soportar tensiones, asimismo electrodos de fierro (A - B) y de acero inoxidable (M - N), combas y una batería de 12 V. y accesorios varios.

7.0 TRABAJO DE CAMPO AUTORIDAD NACIONAL DEL AGUA

La labor de campo se realizó en dos etapas la primera en el mes de Noviembre de 1 999, y la segunda en el mes de marzo del 2000.

El trabajo consistió en realizar sondajes eléctricos verticales dentro y fuera del Fundo Agrícola Ganadero Palo Verde en la primera fase y en la segunda se han realizado los SEVs dentro del área por solicitud de los interesados tal como se muestra en el plano a escala 1/25 000 IGN, los SEVs han sido ubicados por un GPS en el sistema de UTM.

Con esta información de campo se consiguió diferenciar todo el relleno estratigráfico, seco y saturado así como la calidad de agua y la presencia del substrato rocoso para todos los SEVs.

Las medidas de A-B se iniciaron con aperturas de 3 m como mínimo y de 800 m como máximo, de igual forma para las medias de M-N de 2 a 80 m con lo que se consiguió una información adecuada de todo el reservorio acuífero así como del substrato rocoso para algunos SEVs del área de interés del presente estudio.

La ubicación de los sondajes eléctricos verticales y columnas estratigráficas se presentan en la Fig. N°1 del Anexo I.

8.0 TRABAJO DE GABINETE

La información de campo obtenida ha sido procesada e interpretada cuantitativamente mediante la comparación iterativa con el álbum "tablas y curvas patrón para sondajes Eléctricos Verticales sobre terrenos Estratificados" Elaborados por Ernesto Orellana y Harol Mooney.

Cada una de las inflexiones registradas en las curvas de campo han sido cuantificadas en términos de resistividad verdadera y espesores, correspondiendo para cada estrato u horizonte geoeléctrico.

Con los resultados obtenidos de la interpretación y correlacionados con criterios Hidrogeológicos, se ha construido columnas litológicas para este sector.

9.0 INTERPRETACION CUANTITATIVA

La interpretación de los sondajes eléctricos verticales consiste en determinar la distribución vertical de los diferentes espesores y sus resistividades verdaderas.

Los resultados de la interpretación cuantitativa se presentan en el cuadro N° 1.

Los mismos que han sido reajustados a través de programa especial para Resistividad Eléctrica en cuanto a la interpretación ver curvas de campo.

9.1 Tipos de Curvas de los SEVs para el Área de Estudio

Los sondeos eléctricos verticales han sido agrupados hasta en tres patrones tipos, los cuales corresponden a KQHKH, QQH y KQQH estos tipos de curvas se encuentran ampliamente distribuidos en la zona de estudio y básicamente muestran la ocurrencia de cuatro a cinco capas geoeléctricas que corresponden a diferentes horizontes, las curvas de campo se presentan en las Fig. del 02 al 09 del anexo l.

9.2 Columna Típica del Acuífero del Área en Estudio

A causa de las variaciones en la saturación y a la acción meteórica de los materiales cercanos a la superficie, es conveniente, agrupar el complejo de capas superiores en un solo horizonte que puede ser total o parcialmente seco, dependiendo mucho de la posición del nivel friático local.

En la mayor parte del área de estudio, los sedimentos más gruesos están más cercanos a la superficie del terreno, mientras que los más finos en algunos casos descansan sobre el substrato rocoso.

CUADRO Nº 1 RESULTADOS DE LA INTERPRETACIÓN CUANTITATIVA DE LOS SONDAJES ELÉCTRICOS VERTICALES

EJECUTADO EN EL FUNDO AGRÍCOLA GANADERA PALO VERDE SECTOR DE LA MATANZA VALLE DEL ALTO PIURA

SEV	f1 h1	f ₂ h ₂	fa ha	f4 h4	fs hs	f ₆ h ₆	f ₇ h ₇	н	SECTOR DE UBICACION
01	183,0 1,4	118,1 5,1	6,7 20,4	3,5 34,4	1030,7				
02	79,8 0,9	299,7 1,9	28,5 1,7	7,6 16,4	5,3 38,6	100,5			
03	93,6 0,4	120,8 4,4	10,8 3,7	6,6 35,5	19,8				
04	143,0 1,1	51,1 4,8	7,1 16,3	12,0 38,4	32,3 59,2	4,3 270,6	995,8 		
82	35,1 1,7	126,2 4,2	15,8 9,9	7,5 25,3	38,7 31,9	4,6 38,0	54,8 		
05	32,2 A _{0,9}	223 2,3	17,3 3,1	1,9 14,6	11,9 39,1	IGLA		100	
06	58,0 1,2	134 3,5	25,6 5,3	6,1 39,3	23,4 47,2	266			
07	84 1,0	210 3,0	19,4 4,4	7,8 46,7	69,7 213,7	16,0			

H=Profundidad hasta la base de la capa

f=Resistividad en Ohm-m

h=Espesor de cada capa en m.

En todos los acuíferos no confinados, de la mayoría de los valles de la costa, la explotación del agua subterránea se efectúa en pozos de los horizontes superiores ya que las variaciones del espesor (potencia) de esta cobertura permeable determinan en muchos casos la posibilidad de bombeo.

En el área de estudio se han agrupado los valores de las resistividades de acuerdo a su permeabilidad y granulometría, en un solo horizonte.

10.0 RESULTADOS

De la interpretación cuantitativa de los sondajes eléctricos verticales (SEVs), nos ha permitido elaborar columnas litológicas para cada punto en los que se consignan los valores de las resistividades en (Ohm-m) y los espesores en (m) para cada capa geoeléctrica las que a continuación se describen:

10.1 Columna Litológica

Se caracterizan por estar constituido por todo el relleno estratigráfico de composición fluvio aluvial provenientes de diferentes formaciones.

Para la descripción de las siguientes columnas se realizara mediante horizontes permeables e impermeables:

Horizontes Permeables H1, H2, H4 y H5 Fig. Nº 10 al 17

Esta conformada por todos los depósitos in consolidados que suprayacen al substrato rocoso, con potencias muy variadas la permeabilidad es de mediana a baja y esta conformada por cuatro horizontes geoeléctricos donde:

* Primer Horizonte (H1)

Corresponde a la primera capa superficial parcialmente saturada conformada por más de dos valores de resistividad los mismos que varían de 28,5 a 299,7 Ohm-m conformados por sedimentos de grano medio a fino como, limos, arenas medianas a finas con presencia de poca arcillas, su profundidad de investigación es hasta los 15,8 m, aproximadamente presenta buena permeabilidad.

* Segundo Horizonte (H2)

Corresponde al horizonte de baja permeabilidad ubicado a diferentes niveles de profundidad conformado por resistividades con un valor de 3.5 a 12,0 Ohm-m y que correspondería a arenas medianas a gruesas con presencia de cantos rodados con poca presencia de arcillas salobres la profundidad de investigación alcanzada es de 41,1 a 61,2 m, aproximadamente

Cuarto Horizonte (H4)

Corresponde al cuarto Horizonte de buena permeabilidad determinado a diferentes niveles de profundidad el mismo que correspondería al acuífero aprovechable con valores de resistividad de 19,8 a 54,8 Ohm-m conformado por sedimentos como arenas gruesas a medianas con gravas su potencia es de 31,9 a 59,2 m, este horizonte se le puede ubicar infrayaciendo al H2 o en la parte media de ambos horizontes.

Quinto Horizonte (H5)

Corresponde al quinto horizonte de buena permeabilidad el mismo que correspondería al acuífero aprovechable conformado por arenas medianas a finas con poca presencia de arcillas, presenta una resistividad de 23,4 a 69,7 Ohm-m con una potencia de 47,2 a 213 m, aproximadamente

Horizonte Impermeable H3

Corresponde al substrato rocoso altamente resistente determinado a diferentes nivel de profundidad, presentando una geoforma muy irregular.

11. LOCALIZACION DE LOS POZOS PROYECTADOS

La localización del pozo proyectado ha sido determinada en función a una evaluación piezométrica y a los resultados del estudio de prospección geofísica para ello se ha considerado las características del acuífero, su potencia y resistividad del horizonte permeable así, como la profundidad del nivel friático local.

El caudal probable de los pozos proyectados sería de 25 a 30 l/s.

12. DISEÑO PRELIMINAR DE LOS POZOS

12.1 Diseño Físico de los Pozos

En la figura Nº 18 y 19 del Anexo I, se presentan en los diseños preliminares de los pozos proyectados, los mismos que tienen carácter preliminar y deberán ser ajustados a otro definitivo de acuerdo a los resultados que se obtenga durante la fase de perforación.

Para la elaboración de los diseños preliminares se ha tenido en cuenta las características hidrogeológicas de la profundidad actual del nivel de la napa freática y su relación en el futuro; así como el abatimiento del nivel del agua en el pozo proyectado.

La descripción del diseño se presenta a continuación:

- Perforación SEV 06 Fig. 18

De 0,0 a 90,00 m de profundidad de 18"

Entubado Ciego Definitivo

El entubado definitivo ciego será de acero LAC (comercial) de bajo contenido de carbono soldado en una sola ranura, de 12" de \varnothing y $\frac{1}{4}$ de espesor distribuido de la siguiente manera:

- > De 0,40 sobre saliendo de la superficie del suelo
- De 00.00 a 57,50 m de la perforación
- De 87,60 a 90,00 m con colector
- La longitud total de la tubería ciega sería de 60,30, m

Área Filtrante

Estará constituido por filtros de ranura continua de diámetro de 12" y aberturas de un mm. Distribuidos de la siguiente manera: De 57,50 a 87,60 m de perforación.

La longitud total de la tubería filtro sería de 30,10 m cabe indicar que este tramo puede variar de acuerdo a la perforación del cual sería reajustado a través del registro geofísico y muestreo litológico del pozo.

- Filtro Grava

El espacio anular que esta entre la perforación y el entubado deberá ser rellenado con grava seleccionada, limpia y redondeada cuya dimensión será definida sobre la base del análisis del granulométrico de las muestras del material acuífero y las especificaciones técnicas de los filtros a utilizarse.

Cementación

Corresponde al espacio del perfil longitudinal del pozo de 00, 0 a 55,0 m, de profundidad el cual sé tendrá que perforar con un diámetro de 24" a la profundidad ya indicada en la que se iniciara la cementación correspondiente.

- Perforación SEV 07 Fig. 19

De 0,0 a 100,00 m de profundidad de 18"

Entubado Ciego Definitivo

El entubado definitivo ciego será de acero LAC (comercial) de bajo contenido de carbono soldado en una sola ranura, de 12" de \emptyset y $\frac{1}{4}$ de espesor distribuido de la siguiente manera:

- ➤ De 0,40 sobre saliendo de la superficie del suelo
- De 00,00 a 60,00 m de la perforación
- > De 97,60 a 100,00 m con colector
- La longitud total de la tubería ciega sería de 62,80, m

- Área Filtrante

Estará constituido por filtros de ranura continua de diámetro de 12" y aberturas de un mm. Distribuidos de la siguiente manera: De 60.00 a 97,60 m de perforación.

La longitud total de la tubería filtro sería de 37,60 m cabe indicar que este tramo puede variar de acuerdo a la perforación del cual sería reajustado a través del registro geofísico y muestreo litológico del pozo.

- Filtro Grava

El espacio anular que esta entre la perforación y el entubado deberá ser rellenado con grava seleccionada, limpia y redondeada cuya dimensión será definida sobre la base del análisis del granulométrico de las muestras del material acuífero y las especificaciones técnicas de los filtros a utilizarse.

Cementación

Corresponde al espacio que debera ser cellado o cementado con la finalidad de separar los estratos de mala y buena calidad de acuerdo al diseño de pozo sé tendrá que perforar con un diámetro de 24" a la profundidad que se indique en la fig. 19.

13.0 CONCLUSIONES

- De acuerdo al estudio de prospección geoeléctrica, e interpretación y resultados del área de estudio, se ha determinado que el subsuelo investigado, existe una formación acuífera, identificada mediante una resistividad eléctrica de 3,5 a 299,7 Ohm-m
- Geológicamente el área de estudio estaría conformada por depósitos in consolidados fluvio aluvial que han cubierto antiguas depresiones y causes.
- De acuerdo a los parámetros locales sobre explotación para la zona se estima que en esta área hay posibilidades de explotación mediante pozos que tengan 90 a 100 m, de profundidad previa cementación de los primeros metros tal como se indica en el diseño.

La recarga para la zona se indican como principal fuente al río Piura y al tipo de riego que viaja a través de los estratos in consolidados para llegar a niveles medios y profundos.

- Para investigar los depósitos del presente acuífero, se ha utilizado el método de resistividad Eléctrica en su modalidad sondaje eléctrico vertical utilizando la configuración tetraelectródica.
- Los SEVs 5 y 6 el horizonte aprovechable seria el H5, en cambio para los SEVs 3 y 4 el horizonte aprovechable seria el H4 tal como aparece en los gráficos.

Se ha determinado el horizonte impermeable casi para todos los SEVs.

La permeabilidad es de media a baja debido a la presencia de las sales contenidas en los sedimentos saturados en superficie y parte media, a mayor profundidad cambia la calidad de agua.

- Sobre la base de estos datos geofísicos se ha elaborado columnas litológicas.

 Los SEVs con mejores características geoléctricas se presentan en las recomendaciones:

14.0 RECOMENDACIONES

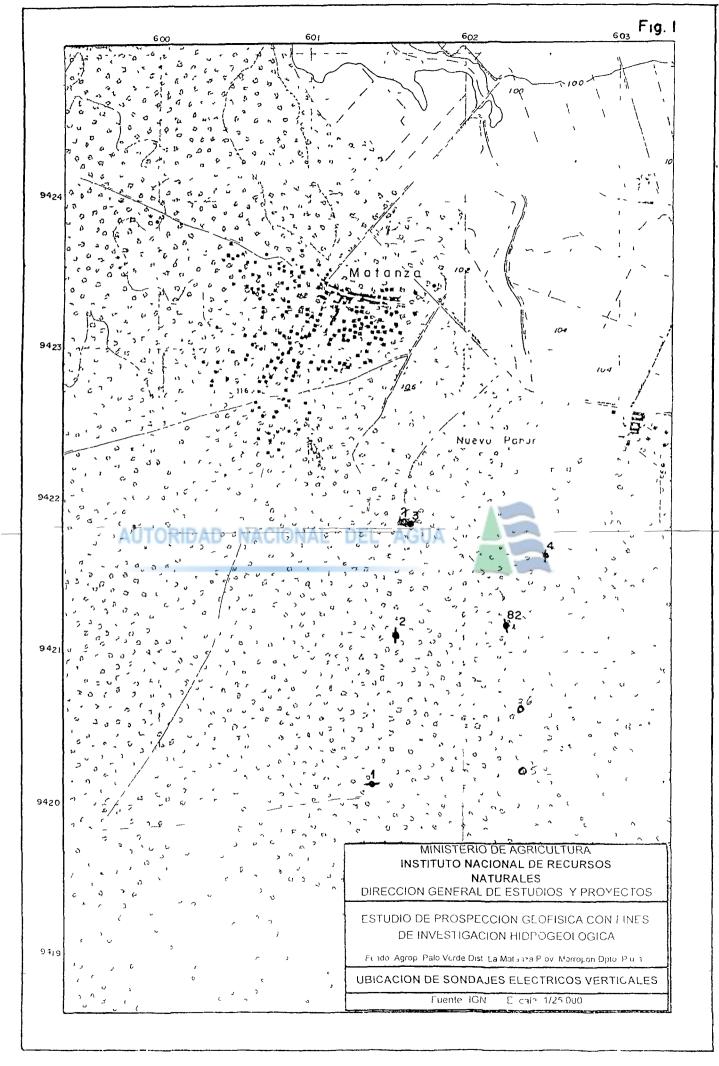
Debido a su alto grado de permeabilidad determinada en los SEVs N° 06 y 07 realizados recientemente dentro de la propiedad, se pueden considerar como los de mejor posibilidad para llevar acabo una perforación tubular cuyas característica son las que se indican a continuación.

SEV N°	Resistividad (ohm-m)	Espesor (m)	Profundidad (m)
06	23,4	47,2	90,0
07	69,7	>100	100,0

Se recomienda ejecutar en Registro Geofísico de gamma natural y resistividad eléctrica en el pozo a perforarse con la finalidad de definir la posición de los filtros en la fase definitiva del pozo.

AUTORIDAD NACIONAL DEL AGUA

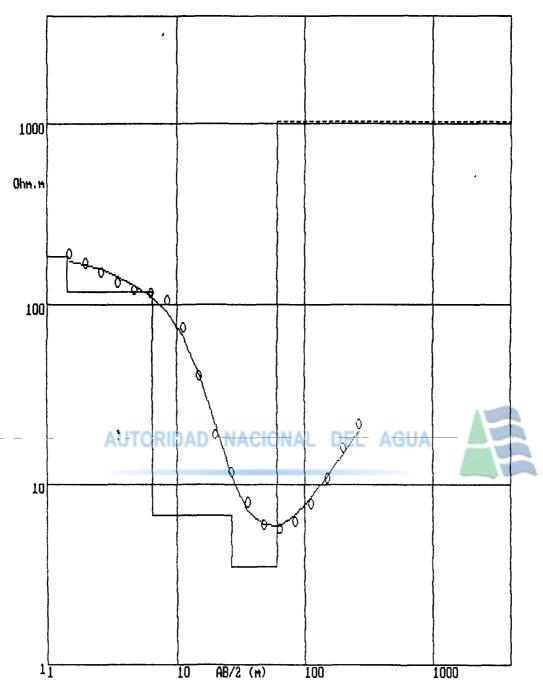
ANEXOS AUTORIDAD NACIONAL DEL AGUA



ANEXO I

Relación de Figuras

01	Ubicación de Sondales Eléctricos Verticales
AUTOR 2 al 9	Curvas de los Sondajes Eléctricos Verticales
10 al 13	Columnas Litológicas
18	Diseño Preliminar del Pozo Proyectado SEV - 06
19	Diseño Preliminar del Pozo Proyectado SEV – 07



Date of the measurement : AGRICOLA GANADERA PALO VERDE

Location : LAA MATANZA ALTO PIURA Map nr. : IGN. 1:25 000 Measuring station nr. : SEV 01 Curve Fitting RMS Error : 7.8 %

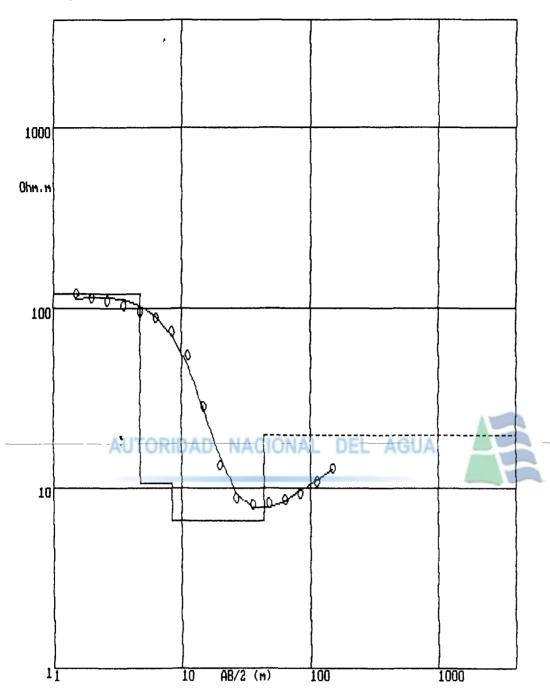
Model p	parameters		
Layer	Thickness	Resistivity	Interpretation
1	1.4	183 0	AGRICOLA GANADERA PALO VERDE LA MATANDA
2	5 1	118 1	COORD 601520E 9421153N
3	20 4	6 7	LA MATANZA 15-11-99 INPENA
<u>'</u>	34 4	3 5	ING. 3 J MONTOTA Y
5	TME	1030 7	

: LAA MATANZA ALTO PIURA

SEV 02 3.6 %

Map nr. : IGN. 1:25 000 Measuring station nr. : Curve Fitting RMS Error :

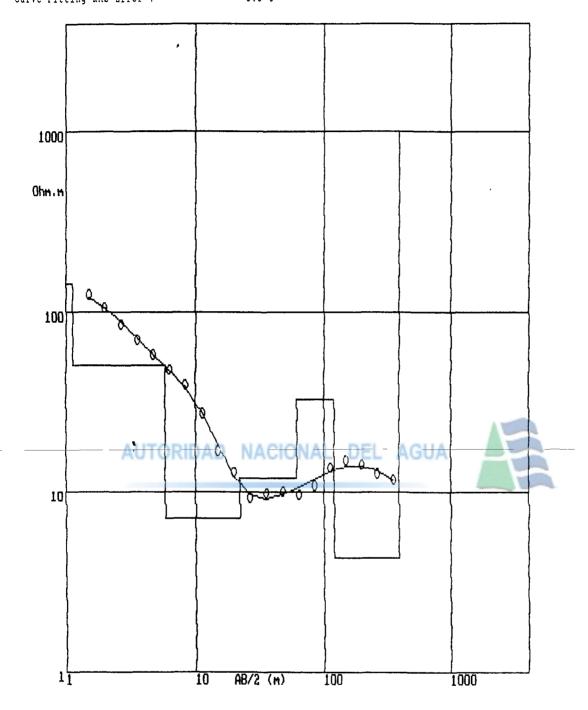
Location



	parameters : Thickness	Resistinity	Interpretation
1	0.9	79.8	AGRICOLA GANADERA PALO VERDE LA MATANDA
2	1.9	299 -	COORD 601597E 9422097N
3		28.5	LA MATANZA 15-11-99 INRENA
4	16.4	7.€	ING G.J MONTOYA M.
5	38.5	5.2	
٤	INF.	100 5	

Date of the measurement : AGRICOLA GANADERA PALO VERDE

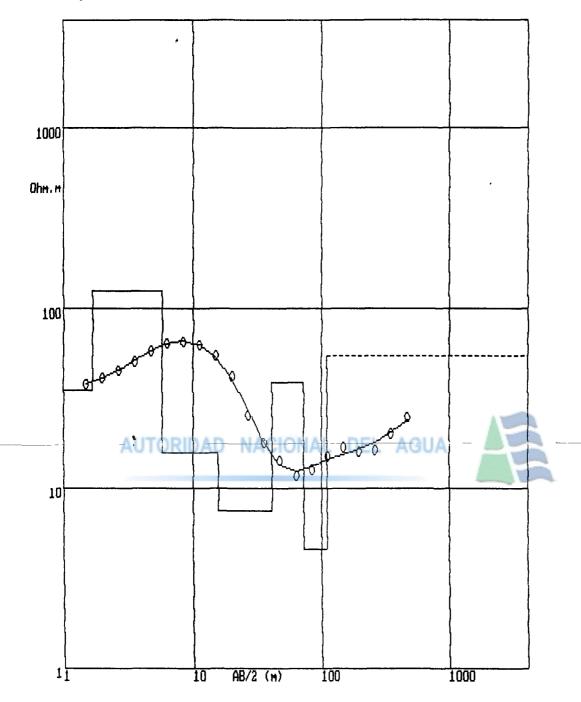
Location : LA MATANZA ALTO PIURA
Map nr. : IGN. 1:25 000
Measuring station nr. : SEV 03
Curve Fitting RMS Error : 6.0 %



Model p	parameters :		
Layer	Thickness	Resistivity	Interpretation
1	0.4	93.6	AGRICOLA GANADERA PALO VERDE LA MATANZA
2		120.8	COCRD.601659E 9422826N
3	3.7	10.8	LA MATANZA 15-11-99 INRENA
4	35.5	έ, δ	ING. G.J. MONTOYA M.
5	IXF.	19.8	

Location : LA MATANZA ALTO PIURA
Map nr. : IGN. 1:25 000
Measuring station nr. : SEV 04
Curve Fitting RMS Error : 5.0 %

Fig. 5


Model p	arameters		
Layer	Thickness	Pesistivity	Interpretation
1	1.1	143.0	AGRICOLA GANADERA PALC VERDE LA MATANCA
2	4 9	51 1	COORD.602499E 94225628
3	16.3	7 1	LA MATANZA 15-11-99 INPENA
4	33 4	12 0	ING. G.J. MONTOYA X
5	59 2	32 3	
5	270 6	4.3	
7	INF	995.8	

Date of the measurement : AGRICOLA GANADERA PALO VERDE

Location : LA MATANZA ALTO PIURA Map nr. : IGN. 1:25 000 Measuring station nr. : SEV 82 ARCHIVO

4.3 % Curve Fitting RMS Error:

Model	parameters :		
Layer	Inickness	Resistivity	Interpretation
1	1.7	35.1	AGRICOLA GANADERA PALO VERDE LA MATANZA
2	4.2	126.2	COORD 602270E 9422175V
3	9.9	15.8	LA MATANZA 23-06-9° INRENA
4	25.3	7.5	ING G.J MONTOYA M
5	31.9	38.7	
É	38.0	4.6	
_7	INF.	54.8	_

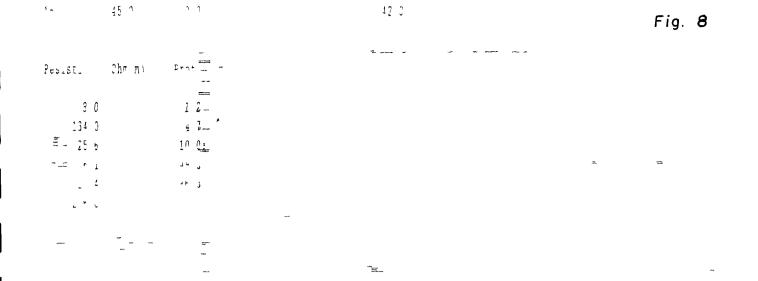
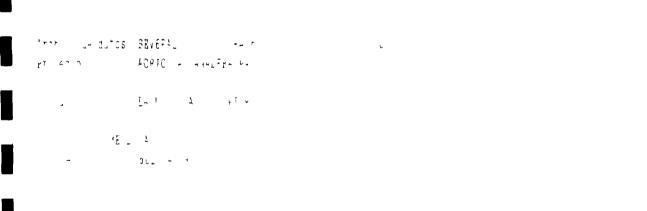
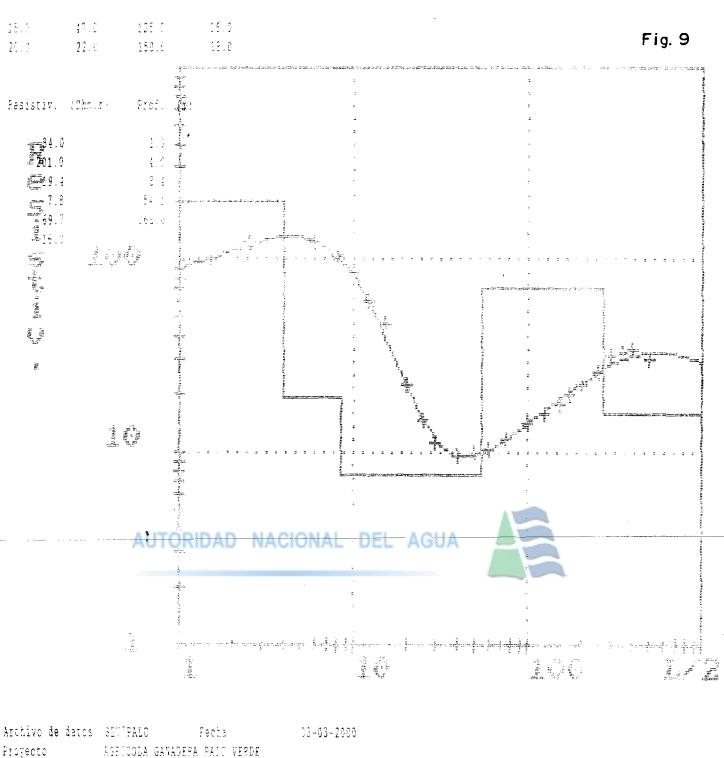


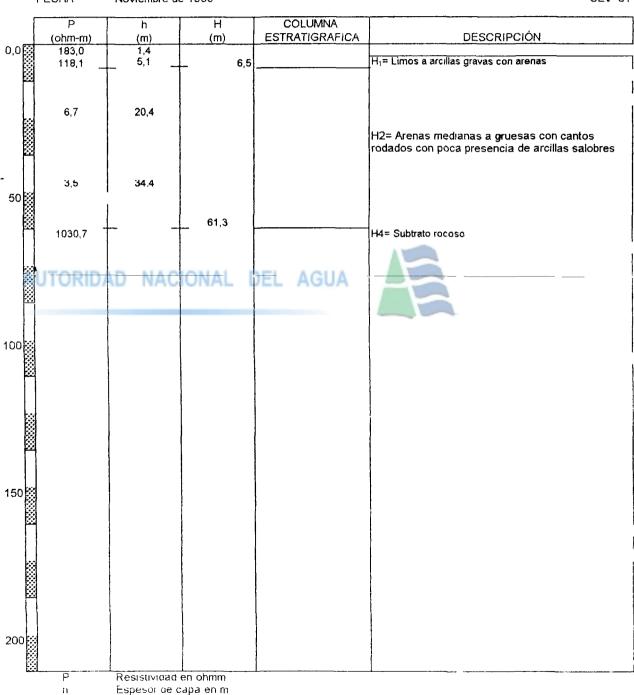
Fig. 6

AUTORIDAD NACIONAL DEL AGUA




AUTORIDAD NACIONAL DEL AGUA

American Total


PROYECTO: Prospección Geofísica Agricola Ganadera Palo Verde

UBICACION La Matanza Alto Piura

ESCALA 1:1000

EJECUTOR Ing. J G Montoya Mendoza

FECHA Noviembre de 1999 SEV 01

PROYECTO: Prospección Geofísica Agricola Ganadera Palo Verde UBICACIÓN: La Matanza Alto Piura ESCALA: 1:400 INRENA EJECUTOR: Ing. J.G.Montoya Mendoza :Noviembre de 1999 SEV 02

ſ	Р	h	Н	COLUMNA	
	(ohm-m)	(m)	(m)	ESTRATIGRAFIGA	DESCRIPCIÓN
0,0	79,8 299,7	0,9 1,9			H ₁ = Limos a arcillas gravas con arenas
	299,7 28,5 _	1,7	4,5		
	20,0 =	Γ ''' -			
		}			ļ.
		40.4			
	7,6	16,4			
		ļ			
H					
		J			
20		1			
H					H2= Arenas medianas a gruesas con cantos
11	5,3	38,6		u.	rodados con poca presencia de arcillas salobres
				Til.	
					A VIII
	A.1	ITODID A	D MAGE	ONAL DEL	A CUIA
	Al	JUNIDA	D NACI	ONAL DEL	AGUA
40					
			'		
	100,5	†	Γ ,		H=3 Substrato rocoso
]
60					
		ļ			
- 11		Į			
		J			
		İ			
П		[
		i			
200					
200		ĺ			1
	P .	Resistividad			, was a
	h	Espesor de c		0000 00 m	L.SHIRE Communication of CURSON
	Н	riolulididad a	a la base de la	capa en m	PSTURIES - ISBENA
					BIBLICTECA
					the state of the s
					reso: 007130
					007130
					' ¹ lā:

PROYECTO: Prospección Geofísica Agricola Ganadera Palo Verde UBICACIÓN: La Matanza Alto Piura

ESCALA : 1:400 INRENA
EJECUTOR : Ing. J.G.Montoya Mendoza
FECHA :Noviembre de 1999

SEV 03

Г	Р	h	Н	COLUMNA	
}	(ohm-m)	(m)	(m)	ESTRATIGRAFICA	DESCRIPCIÓN
0,0	93,6	0,4	(111)	LOTIVATIONALION	DEGORAL CION
0,0	120,8	4,4			
	120,0	','			1
					H₁= Limos a arcillas gravas con arenas
	10,8	3,7			
	· –		– 8,5	- 	
			·		<u>'</u>
					1
11					
-					
20	1				
	i	1			
22					H2= Arenas medianas a gruesas con cantos
					rodados con poca presencia de arcillas salobres
1 [ĺ				
	6,6	35,5	J		A water
	Al	JTORIDA	D NACI	ONAL DEL	AGUA
11				011111111111111111111111111111111111111	100/1
40					
40					
	1		ł		
l i					
[]	ĺ		_ 44,0		
	19,8	- 7			H=4 Arenas gruesas a medianas con gravas
			J		acuifero aprovechable
- 11					ļ
00					
60		l l	·	 	1
			' l		
11					
	1				
			1	!	
-					
200				!	
			' l		1
	Р	Resistividad e	an ohmm		L
	Г	LESISTIVIDAD (511 OHHHHH		

Espesor de capa en m h

Prospección Geofísica Agricola Ganadera Palo Verde La Matanza Alto Piura PROYECTO

UBICACIÓN 1 1000 INRENA Ing J G Montoya Mendoza **ESCALA EJECUTOR** FECHA Noviembre de 1999

SEV 04

Г	Р	h	Н	COLUMNA	T
1	(ohm-m)	(m)	(m)	ESTRATIGRAFICA	DESCRIPCIÓN
0,0	143,0 51,1	1,1 4,8	5,9		H ₁ = Limos a arcillas gravas con arenas
	31,1		_ 5,9		THE CHINGS & GROWERS GROWERS CONTRICTION
	7,1	16,3			
		1			H2= Arenas medianas a gruesas con cantos
					rodados con poca presencia de arcillas salobres
} }					
	12,0	38,4			
50					
٦	_		60,6		1
H			00,0		
11					
		ľ			A visit of
Ц					
11	32.3 A	59.2	D NACI	ONAL DEL	H4= Arenas gruesas a medianas con gravas
11	52,5	332			H4= Arenas gruesas a medianas con gravas acuifero aprovechable
100					
H					
	4,3	_	119,8		H2= Arenas medianas a gruesas con cantos
	.,-				redados con poca presencia de arcillas salobres
11		:			
]	l				
150					
		,			
-					
	!				
200					
		Resistividad (en ohmm		l

h

Espesor de capa en m

PROYECTO: Prospección Geofísica Agricola Ganadera Palo Verde UBICACIÓN: La Matanza Alto Piura

ESCALA : 1:500 INRENA
EJECUTOR : Ing. J.G.Montoya Mendoza
FECHA :Marzodel 2 000

SEV 05

Г	Р	h	Н	COLUMNA	
	(ohm-m)	(m)	(m)	ESTRATIGRAFICA	DESCRIPCIÓN
0,0	32,2	0,9			
	223,0	2,3	6.3		H ₁ = Limos con arcillas con matriz arenosa
H	17,3	3,1	6,3		
- 11			ļ		l I
	1,9	14,6			H2= Arenas gruesas a medianas totalmente
	4.0	1	}]	salobres
	1,9	j	20,9		
20			- 20,3		
P.2484					
	1	1			
					1
			•		
40	11,9	39,1			H=3 Arenas medianas a finas con arcillas
	11,0	00,1			The state the district of the state of the s
	Al	JTORIDA	D NACI	ONAL DEL .	AGUA
11					
	-				
			60,0		
60	_	-			
33	98,0				
					H=4 Sibstrato rocoso
					1
H					
-					
100					
3000					
					1
	P	Resistividad	en ohmm		

P h Espesor de capa en m

PROYECTO: Prospección Geofísica Agricola Ganadera Palo Verde UBICACIÓN: La Matanza Alto Piura

ESCALA : 1:1000 INRENA
EJECUTOR : Ing. J.G.Montoya Mendoza
FECHA : Marzodel 2 000

SEV 06

Г	P	ĥ	Н	COLUMNA	
- 1	(ohm-m)	(m)	(m)	ESTRATIGRAFICA	DESCRIPCIÓN
0,0	58,0	1,2	(111)	20110111010111071	<u> </u>
9,5	134,0	3,5			H ₁ = Limos con arcillas con matriz arenosa
	25,6	3,5 5,3	10		
	6,1	39,3	_		H2= Arenas gruesas a medianas totalmente salobres
50	_		49,3		1
					H=5 Acuifero arenas medianas a finas con arcillas
	23,4	47,2			<u>'</u>
		· ·			A seed
100	266,0	AUTO	RIDAD N	IACIONAL D	H=4 Sibstrato rocoso
	P	Resistividad	an ohmm		

Resistividad en ohmm

h Espesor de capa en m

SEV 07


COLUMNA LITOLOGICA

PROYECTO: Prospección Geofísica Agricola Ganadera Palo Verde

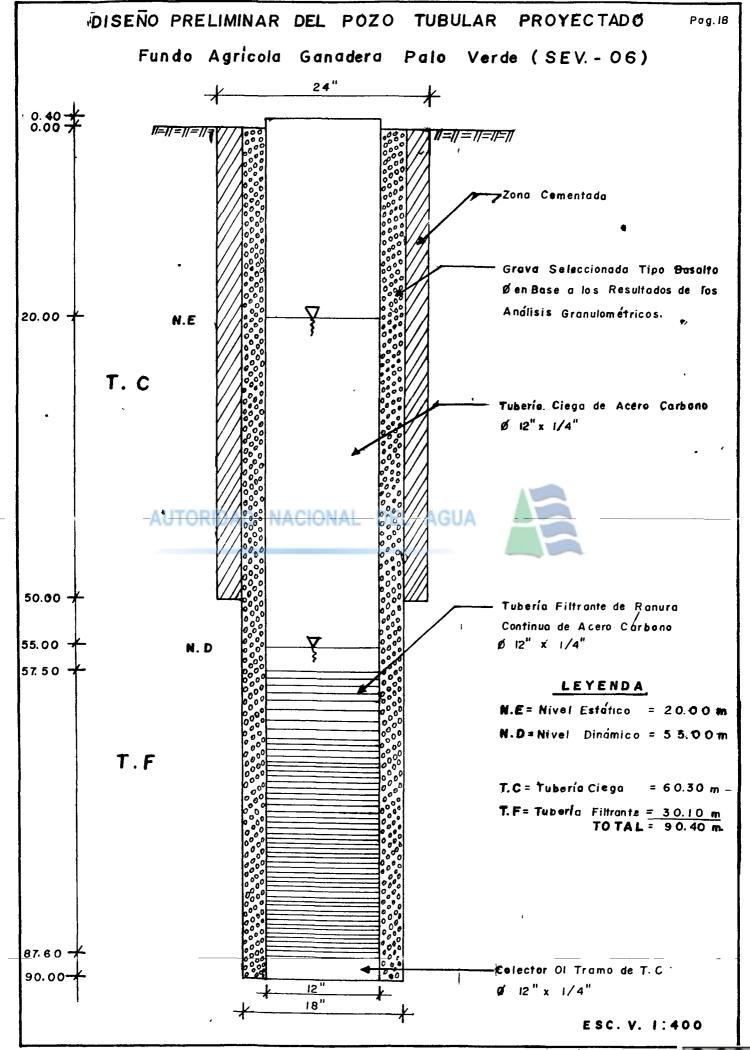
UBICACIÓN : La Matanza Alto Piura ESCALA : 1:2000 INRENA

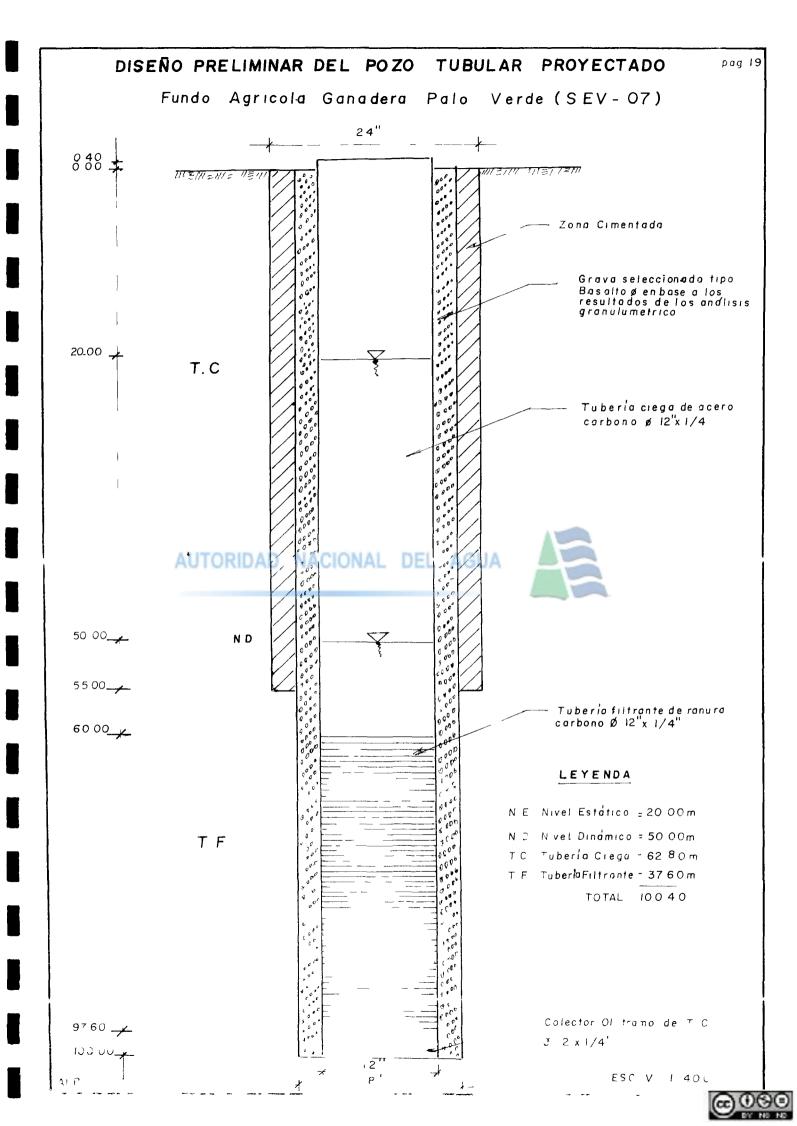
EJECUTOR: Ing. J.G.Montoya Mendoza

FECHA: Marzodel 2 000

P Resistividad en ohmm

h Espesor de capa en m


PROYECTO: Prospección Geofísica Agricola Ganadera Palo Verde UBICACIÓN: La Matanza Alto Piura ESCALA: 1:1000 INRENA EJECUTOR: Ing. J.G.Montoya Mendoza :Noviembre de 1999


SEV 82

Г	P	h	Н	COLUMNA	
	(ohm-m)	(m)	(m)	ESTRATIGRAFICA	DESCRIPCIÓN
0,0	35,1	1,7	· · · · · ·		
	126,2	4,2			H ₁ = Limos a arcillas gravas con arenas
H	15,8	9,9			
	13,8	- 5,5	15,8		
\ \	i				
	7.5	25.2			H2= Arenas medianas a gruesas con cantos
	7,5	25,3			rodados con poca presencia de arcillas salobres
h-1					
	-		41,1		
50					
50	i		İ		
					H4= Arenas gruesas a medianas con gravas acuifero aprovechable
П	38,7	31,9			acuifero aprovechable
			73,0		
		_	-		A was
	4,6	39.0			
11	4,0 A	38,0	D NAC	ONAL DEL	H2= Arenas medianas a gruesas con cantos
11	}	'	' i		H2= Arenas medianas a gruesas con cantos redados con poca presencia de arcillas salobres
100	-				
			111		
H	54,8		- '''		1
	·				H4= Arenas gruesas a medianas con gravas
830-00					acuifero aprovechable
	ĺ				
					1
[]	ĺ		·		
150					
					Į į
]]					
H					
200					
		Resistividad e	en ohmm		<u> </u>

Espesor de capa en m h

