MINISTERIO DE AGRICULTURA
INSTITUTO NACIONAL DE RECURSOS NATURALES
INTENDENCIA DE RECURSOS HIDRÍacos
PROYECTO NACIONAL DE APROVECHAMIENTO DE
AGUAS SUBTERRÁNEAS - PRONASUB
ADMINISTRACIÓN TÉCNICA DEL DISTRITO DE RIEGO ALTO PIURA
HUANCABAMBA

EXPEDIENTE TÉCNICO
VOLUMEN - I

REHABILITACIÓN, ELECTRIFICACIÓN Y EQUIPAMIENTO DE POZOS
II ETAPA VALLE ALTO PIURA

REGION: PIURA
DEPARTAMENTO: PIURA
PROVINCIA: MORROPOS
DISTRITO: SALITRAL, MORROPOS, MATANZA, CHULUCANAS

FEBRERO - 2005
## VOLUMEN I

### 1.0 MEMORIA DESCRIPITIVA

1.1 Introducción ................................................................. 1
1.2 Antecedentes ........................................................................ 2
1.3 Objetivos ........................................................................... 2
1.4 Metas ................................................................................. 3

### 2.0 SITUACION ACTUAL DEL PROYECTO

2.1 Ubicación Política .............................................................. 3
2.2 Ubicación Sectorial ........................................................... 3
2.3 Vías de Acceso ..................................................................... 4
2.4 Clima ................................................................................ 4
2.5 Hidrología ........................................................................... 5
2.6 Hidrogeología ..................................................................... 5
2.6.1 Fuentes de Agua Subterránea ........................................... 6
2.6.2 Recursos Hídricos Subterráneo ....................................... 7
2.7 Tenencia de Tierra .............................................................. 7
2.8 Uso Actual de la Tierra ....................................................... 7
2.9 Aspecto Socio Económico .................................................. 8
2.10 Infraestructura de Servicios ............................................. 10
2.11 Infraestructura de Riego Existente .................................... 10
2.12 Infraestructura de Energía Eléctrica Existente ................. 10
2.13 Organización Representativa ............................................ 10
2.14 Valor de la Producción Agrícola Actual ............................. 11
3.0   EL PROYECTO
3.1   Planteamiento Hidráulico ................................................................. 13
3.2   Demanda de Agua .......................................................... 13
3.3   Disponibilidad de Agua para el Proyecto ........................................... 13
3.3.1  Agua Superficial ................................................................. 13
3.3.2  Agua Subterránea ...................................................................... 14
3.4   Criterio de Evaluación ................................................................. 14
3.5   Impacto Ambiental .......................................................................... 16
3.5.1  Impacto Ambiental Positivos ...................................................... 16
3.5.2  Impacto Ambiental Negativos .................................................... 17
3.6   Descripción de las Obras a Ejecutarse ............................................. 17
3.6.1  Revisión y Selección de Equipos de Bombeos ............................... 17
3.6.2  Diagnostico de Pozos ................................................................. 17
3.6.3  Obras de Rehabilitación ............................................................. 21
3.6.4  Obras Civiles ............................................................................ 22
3.6.5  Cronograma de Ejecución de Obra .............................................. 24
4.0   PRESUPUESTO DE OBRA
4.1   Presupuesto Base ............................................................................. 24
4.2   Costos Unitarios .............................................................................. 24
4.3   Cronograma de Desembolso ............................................................ 25
4.4   Requerimiento de Insumos .............................................................. 25
5.0   BENEFICIO DEL PROYECTO
5.1   Valor de la Producción Agrícola con Proyecto .................................... 30
5.2   Disponibilidad de Equipos de Bombeo ............................................. 34
5.3   Incremento de la Producción y ingreso Neto ..................................... 34
6.0   CONCLUSIONES ....................................................................... 35
6.1   RECOMENDACIÓN .................................................................... 36
7.0 ESPECIFICACIONES TECNICAS PARA REABILITACION DE POZOS Y OBRAS CIVILES

7.1 Trabajos Preliminares ............................................................... 38
7.2 Rehabilitación de pozos .............................................................. 39

7.3 ESPECIFICACIONES TECNICAS DE LAS OBRAS CIVILES

7.3.1 Construcción de bases de bombas ........................................ 45
7.3.2 Cimentación de antepozos ...................................................... 46
7.3.3 Construcción de poza de disipación ......................................... 46
7.3.4 Construcción de tramo de Canal ............................................... 47

7.4 FLETE

7.4.1 Materiales de Construcción ..................................................... 47
7.4.2 Transporte del Equipo de Bombeo de Lima a Chulucanas ............. 47
7.4.3 Transporte local del Almacén de Chulucanas a los Pozos .............. 47

7.5 DIRECCION TECNICA .............................................................. 47

7.6 ESTUDIO DE FACTIBILIDAD TECNICO ECONOMICO Y LEGAL... 48
RELACIÓN DE CUADROS

01 Inventario de Pozos Valle Alto Piura –INRENA 1993.- 2002.......................... 6
02 Padrón de Usuarios Valle Alto Piura......................................................... 8
03 Cobertura del Proyecto................................................................................ 9
04 Valor de la Producción sin Proyectos ....................................................... 12
05 Demanda, disponibilidad y costos de Agua por Cultivos...................... 15
06 Presupuesto Base Rehabilitación - Desarrollo de Pozos – Obras Civiles ... 26
07 Cronograma de Actividades Rehabilitación y obras Civiles................. 27
08 Cronograma de Desembolso Rehabilitación y obras civiles..................... 28
09 Requerimiento de Insumo Rehabilitación de Pozo – Obras Civiles.... 29
10 Cedula de Cultivo y Demanda de Agua del Proyecto. ......................... 31
11 Valor de la Producción con proyecto – Año de plena Producción........... 32
12 Valor de la Producción con Proyecto......................................................... 33
13 Características Técnicas de los Equipos de Bombeo para Pozos........ 35

ANEXO N° 1

CUADROS:

01. Relación de Pozos, Actividades a Ejecutarse Selección de Equipos de Bombeo Proyectado por Sectores de Riegos

02. Presupuesto Base de Rehabilitación por Sectores de Riego

03. Requerimiento de Insumos por Pozo y Sectores de Riego

04 Planilla de Metrado-Obras Civiles

ANEXO N° 2

Análisis de Costos Unitarios

Leonardo Fortunato Ayala Sánchez
Ingeniero Agrónomo
Reg. CIP N° 17847
PLANOS:

- Plano de Ubicación del Proyecto
- Diseño de Base de Bomba – Ante Pozo .........................P-01
- Diseño de Poza de Disipación – Canal..........................P-02
PROYECTO REHABILITACIÓN ELECTRIFICACIÓN Y EQUIPAMIENTO DE POZOS II ETAPA

VOLUMEN I

REHABILITACIÓN - DESARROLLO DE POZOS Y OBRA CIVILES
VALLE ALTO PIURA

1.0 MEMORIA DESCRIPTIVA

1.1 Introducción

El valle Alto Piura tiene una superficie agrícola aproximada de 31 000 Has, las mismas que están enmarcadas en las subcuencas de los ríos: Bigote, Corral del Medio, la Gallega, Charanal, Yapatera y Sancor; que descargan sus aguas al río Piura, cuyo régimen hidrológico plurianual está condicionado a la presencia de períodos lluviosos, donde se logra sembrar una superficie aproximada de 26 000 Has y en los períodos de sequías prolongadas el área agrícola se reduce a 12 000 Has, las mismas que son irrigadas con la infraestructura de captación de aguas subterráneas existente.

La escasa presencia de lluvias en el presente año, hace prever que es el inicio de una prolongada sequía, que pone en riesgo la pérdida de cultivos transitorios y permanentes instalados en grandes extensiones de terreno, siendo este último el de mayor importancia económica para los agricultores, puesto que les permite obtener ingresos permanentes durante el año, y para la región son fuentes generadoras de divisas por ser productos de exportación.

La agricultura en el Valle Alto Piura se mantiene con el uso de las aguas superficiales y subterráneas, disponiendo de aproximadamente 300 pozos tubulares con equipos de bombeo accionados con motores diesel, cuyos períodos de vida ha superado largamente el periodo de vida útil de dichos equipos. Asimismo, los pozos han bajado su rendimiento por encontrarse arenados y/o con los filtros obstruidos por la incrustación de arcillas o materiales calcáreos; de allí la importancia de realizar un programa de rehabilitación Y desarrollo de pozos y la reposición de los equipos de bombeo existentes de manera progresiva.

El Valles Alto Piura en la actualidad no cuenta con una red de distribución de energía eléctrica extensiva, solo cuentan con energía eléctrica los pueblos rurales más importantes, razón por la cual, para una primera etapa, se seleccionaron solo aquellos pozos que se encuentran ubicados cerca de las líneas de distribución de energía eléctrica existentes, localizándose así 31 pozos, que con las obras de rehabilitación, electrificación y equipamiento se contrarrestará los efectos de sequía y a su vez se reducirá en forma significativa los costos de bombeo del agua subterránea, con la reconversión de motores de explosión a motores eléctricos.

El presente Proyecto de Rehabilitación, Electrificación y Equipamiento de Pozos II etapa se encuentra en marcado dentro de la Política de la Reactivación del Agro, y tiene por finalidad ampliar el numero de pozos a electrificarse en el Valle Alto Piura como alternativa a corto plazo para atenuar los efectos de sequía y reducir los costos de extracción del agua subterránea, frente al alza constante del precio del petróleo.

El equipamiento de los pozos seleccionados se efectuará con bombas de turbina y eje vertical y cabezal eléctrico que dispone el Ministerio de Agricultura – Lima

[Signature]
1.2 Antecedentes

Durante los años de 1985 a 1990, el Ministerio de Agricultura a través del Programa Nacional de Aguas Subterráneas y Tecnificación de Riego – PRONASTER, en el marco del programa de venta a crédito y mediante un Convenio con el Ex-Banco Agrario, instaló en el Valle del Alto Piura, cerca de 160 equipos de bombeo, procedentes de la línea de crédito de la República del Perú con la República Popular China.

Durante los años posteriores a 1990, el Gobierno Peruano adquiere de la República Popular China un lote de maquinaria agrícola, entre el que se consideraba 750 equipos de bombeo para pozos profundos, consistentes en bombas de turbina de ejes vertical con cabezal eléctrico; que, actualmente, se encuentran para su venta al contado o a crédito a través del Agro Banco, en condiciones excepcionales de financiamiento.

El Gobierno actual, en el marco del Plan de Relanzamiento del Sector Agrario, pone en marcha la reactivación del Programa de Aprovechamiento de Aguas Subterráneas - PRONASUB; este último para atenuar los efectos de la sequía presentada en la costa norte, en el corto plazo, y lograr el desarrollo de la explotación sostenida de las aguas subterráneas en el mediano y largo plazo.


En setiembre del 2004 el PRONASUB elabora el Expediente Técnico Rehabilitación electrificación y Equipamiento de Pozos 59 pozos - Valle Alto Piura; así mismo encarga que se continué con la selección de pozos para la electrificación de una II etapa.

En Diciembre del 2004 la Empresa Consorcio Eléctrico Villa Curí – COELVISAC, realiza las coordinaciones con el PRONASUB – beneficiarios del Proyecto, para efectuar la inversión de la electrificación de los 59 pozos en baja tensión lo que representa una esperanza para los agricultores frente a la constante alza de precios del petróleo.

1.3 Objetivos

Los objetivos del Programa de Rehabilitación, Electrificación y Equipamiento de pozos en el Valle Alto Piura, son los siguientes:

• Asegurar el abastecimiento de agua para el riego mediante la explotación racional del agua Subterránea.

• Reincorporación de tierras no cultivadas por efecto de la sequía y mejoramiento del riego en las actualmente cultivadas.

• Reducir los costos de extracción del agua subterránea mediante la reconversión de los motores de explosión a motores accionados por energía eléctrica.

• Mejorar la producción y productividad agrícola de los cultivos transitorios y permanentes, que se cultivan en el valle Alto Piura.
- Capitalización del agricultor mediante la posibilidad de adquisición de los bienes de capital en condiciones adecuadas de financiamiento.

- Promover mejores condiciones de ingreso económico para el agricultor, mediante la conformación de Cadenas Productivas en el área agrícola, con el fin de lograr la sostenibilidad del programa y elevar al nivel de vida del agricultor.

- Generar empleo temporal durante la ejecución del proyecto y permanente en su operación.

- Capacitar a los beneficiarios del programa en la operación y mantenimiento de los equipos de bombeos a instalarse, con el fin de lograr el desarrollo de las potencialidades que permitan la sostenibilidad del programa.

1.4 Metas

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidad</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Diagnóstico y selección</td>
<td>Pozos</td>
<td>31</td>
</tr>
<tr>
<td>- Electrificación de pozos</td>
<td>Pozos</td>
<td>31</td>
</tr>
<tr>
<td>- Instalación de equipos de bombeo</td>
<td>Equipos</td>
<td>31</td>
</tr>
<tr>
<td>De los cuales se requiere:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Rehabilitación y desarrollo</td>
<td>Pozos</td>
<td>16</td>
</tr>
<tr>
<td>- Prueba de bombeo</td>
<td>Pozos</td>
<td>15</td>
</tr>
</tbody>
</table>

2.0 SITUACIÓN ACTUAL DEL PROYECTO

2.1 Ubicación Política

<table>
<thead>
<tr>
<th>Región</th>
<th>Piura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Departamento</td>
<td>Piura</td>
</tr>
<tr>
<td>Provincia</td>
<td>Morropón</td>
</tr>
<tr>
<td>Distritos</td>
<td>Chulucanas – La Matanza – Morropón</td>
</tr>
<tr>
<td></td>
<td>Sanear, Vicus, Yapatera, Charanal, Pabur, La Gallega, Malacasí</td>
</tr>
</tbody>
</table>

2.2 Ubicación sectorial

<table>
<thead>
<tr>
<th>Unidad Agraria</th>
<th>Piura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agencia Agraria</td>
<td>Chulucanas</td>
</tr>
<tr>
<td>Administración Técnica del Distrito de Riego</td>
<td>Alto Piura – Huancabamba</td>
</tr>
<tr>
<td>Junta de Usuarios</td>
<td>Alto Piura</td>
</tr>
<tr>
<td>Comisiones de Regantes</td>
<td>Sancor, Vicus, Yapatera, Charanal, Pabur, La Gallega, Malacasí</td>
</tr>
</tbody>
</table>
2.3 Vías de Acceso

Para llegar al área del proyecto desde la ciudad de Piura, se realiza a través de la antigua carretera Panamericana entre los kilómetros 50 y 65, en su trayectoria se desvía a las capitales de los distritos de Chulucanas, Vicus Yapatera, Sancor, La Matanza, Morropón, y a partir de estos puntos se desplaza por trochas carrozables del tipo afirmado a los diferentes predios de producción agrícola, donde se localizan los pozos tubulares propuestos en el ámbito del proyecto.

VÍAS DE ACCESO

<table>
<thead>
<tr>
<th>DESDE - HASTA</th>
<th>KM</th>
<th>Tiempo Hora</th>
<th>Tipo de Carretera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piura - Chulucanas</td>
<td>58</td>
<td>1:15</td>
<td>Asfaltada</td>
</tr>
<tr>
<td>Chulucanas - La Matanza</td>
<td>20</td>
<td>0:30</td>
<td>Asfaltada</td>
</tr>
<tr>
<td>Chulucanas - Morropón</td>
<td>40</td>
<td>1:00</td>
<td>Asfaltada</td>
</tr>
<tr>
<td>Chulucanas - Buenos Aires</td>
<td>40</td>
<td>1:00</td>
<td>Asfaltada</td>
</tr>
<tr>
<td>Chulucanas - Salitral</td>
<td>80</td>
<td>2:30</td>
<td>Asfaltada - Afirmada</td>
</tr>
</tbody>
</table>

2.4 Clima

Las condiciones climáticas están influenciadas por la corriente del Niño, que se manifiesta por periodos lluviosos con características torrenciales y de elevadas temperaturas, las que dan origen a un elevado índice de evapotranspiración. Asimismo, se presentan periodos de escasas precipitaciones y de sequías prolongadas.

Los parámetros climatológicos, más importantes del Valle, registrados en la estación Chulucanas-Morropón (100-150 msnm), son como sigue:

- Precipitación promedio anual : 250 mm.
- Temperatura máxima : 35.2 °C
- Temperatura mínima : 17.0 °C
- Temperatura media anual : 25 °C
- Humedad relativa máxima : 84 %
- Humedad relativa media : 70 %
- Promedio de horas sol : 110-210 h/mes
- Velocidad de viento máxima : 4 m/s

Leocido Fortunato Ayala Sánchez
Ingeniero Agrónomo
Reg. CIP No 17847
2.5 Hidrología

2.5.1 Morfología de la Cuenca

La cuenca del río Piura, comprendida en el área del proyecto ofrece un relieve con pendiente suave con presencia de pequeñas colinas. A mayores altitudes (más de 2 000 msnm.) las pendientes oscilan alrededor del 30 %.

Gran parte de la superficie de la cuenca se encuentra cubierta por vegetación arbórea y arbustiva, de las especies: algarrobas, hualtaco, palo blanco, higuerones, sauce y palo santo; teniendo en cuenta estas características, se considera como bosque seco semi árido en la zona baja del valle. Se puede señalar que desde el punto de vista morfológico en relación a las característica hidrogeológicas, el acuífero de Alto Piura en la confluencia con sus tributarios está constituido por la sedimentación de las deposiciones aluviales de las subcuencas, las cuales no presentan una permeabilidad significativa.

El área efectiva de la cuenca del río Piura, comprendida desde sus orígenes en la Cordillera Occidental de los Andes, Provincia Huancabamba, hasta su salida en el sector de Tambo Grande, límite inferior del valle, abarca una superficie de drenaje efectiva de 3 148 Km².

2.5.2 Fuentes de Agua Superficiales

El Valle Alto Piura se encuentra ubicado en la cuenca del río Piura que tiene su origen en la desembocadura de los ríos Pusmalca, Canchaque y Bigote, tiene un recorrido de 350 Km hasta su desembocadura en el estuario Birrilá cerca de Illegua, en su trayectoria a lo largo del Valle Piura recibe por su margen derecha las descargas de los ríos afluentes: Corral del Medio, La Gallega, Charanal, Yapatera, Sancor y Quebrada de San Francisco.

El régimen de escurrimiento del río Piura es de carácter irregular y torrentoso, en la estación hidrométrica Nácará ubicada en la parte media del área del proyecto, registra descargas promedios anuales de 14 m³/s, las máximas descargas que se presentan en los meses de Enero a Marzo y las mínimas en los meses de Junio a Diciembre.

2.6 Hidrogeología

Según los estudios realizados por el PE-AFATER, en materia de hidrogeología, han dado como resultado que el acuífero está constituido principalmente por depósitos aluviales del cuaternario reciente, compuesto por arenas, arcillas, limos y conglomerados; los mismos que se hallan separados o entremezclados, conformando estratos de espesores variables. Sus características hidráulicas quedan definidas por los siguientes parámetros:

- Transmisividad: 138.0 – 13 997.0 m²/día
- Conductividad Hidráulica: 27.6 – 1 296.0 m/día
- Coeficiente de Almacenamiento: 1.7 – 8.24 %
- Rendimiento del Acuífero: 5.0 – 25.0 l/s/m

Dichos estudios del PE-AFATER, han determinado que las reservas totales estimadas del acuífero ascienden a 1 815 Hm³; de los cuales 199.6 Hm³ corresponden a las reservas explotables. Si consideramos la baja explotación actual (35.7 Hm³) quedaría una masa anual por explotar, mayor a los 163.9 Hm³ de agua subterránea.
### 2.6.1 Fuentes de agua subterránea

Los estudios de Aprovechamiento de las Aguas Subterráneas realizados por INRENA (1993), determinaron que, en el valle Alto Piura, existen 1 145 pozos, de las cuales 570 (49.8%) pozos son tubulares, 493 (43.1%) pozos a tajo abierto y 82 (6.9%) pozos mixtos; de éstos, solamente, se encontraban operativos 384 (34%) pozos, en los cuales predominaban los equipos de bombeo de fabricación China. Asimismo, existen 307 pozos que no cuenta con equipos y 27 se encuentran con los motores malogrados.

De igual modo los estudios realizados por INRENA en el año 2002 que incluyen el inventario de pozos en el valle Alto Piura, a registrado un total de 1 545 pozos de los cuales 655 (42.4%) son tubulares, 783 (50.7%) a tajo abierto y 107 (6.9%) mixtos.

La mayoría de estos pozos fueron perforados entre los años 1955 a 1970, a la fecha superan los 35 años de antigüedad, por lo cual su estructura interna, constituida por la tubería de revestimiento, debe encontrarse semidestruida, corroída y otro.

La profundidad de perforación son variables entre 20 m a 50 m, los diámetros de la tubería de revestimiento varían entre 15 a 18 pulgadas. El nivel freático de las aguas subterráneas fluctúa entre los 2.0 m a 7.0 m en algunas zonas y sobrepasa los 10 m en otras. Los caudales referenciales varían de 30 a 70 l/s.

Considerando el nivel de arenamiento o pérdida de fondo que tienen los pozos, el grado de incrustación y corrosión de la tubería de revestimiento, su antigüedad, etc.; será necesario realizar los trabajos de rehabilitación - desarrollo de los pozos, los mismos que deberán ejecutarse con sumo cuidado y con una metodología adecuada a fin de no llegar a destruir la tubería forro.

En el Cuadro N° 01 se muestra el resultado comparativo del inventarios de pozos por Distrito, tipos de pozos, realizados en los años 1993 y 2002, a nivel del Valle del Alto Piura

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chulucanas</td>
<td>337</td>
<td>318</td>
<td>309</td>
<td>489</td>
<td>32</td>
<td>60</td>
<td>678</td>
<td>867</td>
</tr>
<tr>
<td>Buenos Aires</td>
<td>70</td>
<td>77</td>
<td>80</td>
<td>76</td>
<td>30</td>
<td>21</td>
<td>180</td>
<td>174</td>
</tr>
<tr>
<td>Morropón</td>
<td>33</td>
<td>48</td>
<td>54</td>
<td>30</td>
<td>3</td>
<td>5</td>
<td>90</td>
<td>83</td>
</tr>
<tr>
<td>Salitral</td>
<td>39</td>
<td>52</td>
<td>41</td>
<td>109</td>
<td>17</td>
<td>11</td>
<td>97</td>
<td>172</td>
</tr>
<tr>
<td>La Matanza</td>
<td>68</td>
<td>120</td>
<td>3</td>
<td>22</td>
<td>-</td>
<td>6</td>
<td>71</td>
<td>148</td>
</tr>
<tr>
<td>Tambo Grande</td>
<td>18</td>
<td>8</td>
<td>2</td>
<td>20</td>
<td>-</td>
<td>2</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>San Miguel del Faique</td>
<td>5</td>
<td>10</td>
<td>4</td>
<td>5</td>
<td>-</td>
<td>1</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>San Juan de Bigote</td>
<td>-</td>
<td>22</td>
<td>-</td>
<td>32</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>55</td>
</tr>
<tr>
<td>TOTAL</td>
<td>570</td>
<td>655</td>
<td>493</td>
<td>783</td>
<td>82</td>
<td>107</td>
<td>1145</td>
<td>1545</td>
</tr>
</tbody>
</table>
2.6.2 Recurso Hídrico Subterráneo

La explotación del agua subterránea ha disminuido en forma sostenida y en magnitud considerable desde el año 1978 cuando la explotación era de 108.1 Hm³; al año 2002 en que la explotación solo fue de 35.7 Hm³.

En 1993 la masa anual extraída, con 384 (34%) pozos utilizados, era de aproximadamente 71.6 Hm³ y en el año 2002 la masa anual extraída, con 519 (33.6%) pozos utilizados era de aproximadamente 35.7 Hm³ esto se debe al mayor incremento de pozos tajo abierto de uso poblacional y/o pecuario.

A continuación se aprecia la evolución de la explotación del agua subterránea en el periodo de 1978 al 2002:

<table>
<thead>
<tr>
<th>AÑO</th>
<th>VOLUMEN ANUAL DE EXPLOTACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>108.1 Hm³</td>
</tr>
<tr>
<td>1980</td>
<td>99.0 Hm³</td>
</tr>
<tr>
<td>1993</td>
<td>71.6 Hm³</td>
</tr>
<tr>
<td>1999</td>
<td>49.4 Hm³</td>
</tr>
<tr>
<td>2002</td>
<td>35.7 Hm³</td>
</tr>
</tbody>
</table>

2.7 Tenencia de la Tierra

Actualmente, las tierras del valle Alto Piura están en su mayoría en posesión de pequeños y medianos agricultores, contando con sus títulos de propiedad otorgados por la ex Dirección de Reforma Agraria o por el Proyecto Especial Titulación de Tierras - PETT; que, en los últimos años, a consecuencia de la baja rentabilidad por los altos costos de producción, muchos agricultores procedieron a vender sus terrenos o arrendar sus fincas a inversionistas quienes conducen de 50 a 200 Has, localizándose las áreas más representativas en los sectores de: Sol Sol, Yapatera y Ñómala.

2.8 Uso Actual de la Tierra

El área del Proyecto Electrificación II etapa se ha evaluado en una superficie de 1407 has distribuidas en el área de influencia de riego de 31 pozo donde se determina que de esta superficie solo se encuentra en producción 700 ha, la diferencia de 707 has permanecen en descanso por efectos de la sequía y por el alto costo de operación de los equipos de bombeos.

Agrología

Los suelos evaluados sobre las 1407 Has, presentan pendientes mínimas, de textura franco-arenosa a franco-arcillosa, limosa; están comprendidas dentro de la clasificación de acuerdo a su aptitud de riego en la clase I – III, cuya producción esta sujeta a la disponibilidad de agua superficial y subterránea.
2.9 Aspecto Socio Económico

La población rural está conformada por los agricultores asentados a lo largo de la Cuenca Hidrográfica del río Piura y las subcuenca Bigote, Corral del Medio, La Gallega, Charanal, Yapatera, quebrada de Sancor y Vicus, los que suman un total de 12 119 familias según el padrón de Usuarios de Riego del Valle, y representan una población de 60 500 habitantes, que dependen directamente de la actividad agropecuaria. Ver Cuadro N° 02 Padrón de Usuarios por Comisión de Regantes - Valle Alto Piura.

CUADRO N° 02

PADRÓN DE USUARIOS POR COMISIÓN DE REGANTES - VALLE ALTO PIURA

<table>
<thead>
<tr>
<th>Comisión de Regantes</th>
<th>Nº Usuarios</th>
<th>Nº de Predio</th>
<th>Superficie Has Total</th>
<th>Bajo Riego</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sancor</td>
<td>797</td>
<td>1122</td>
<td>3,224.87</td>
<td>2,772.42</td>
</tr>
<tr>
<td>Pabur</td>
<td>995</td>
<td>1,346</td>
<td>3,346.16</td>
<td>3,288.55</td>
</tr>
<tr>
<td>Serrán</td>
<td>462</td>
<td>722</td>
<td>1,129.51</td>
<td>1,116.20</td>
</tr>
<tr>
<td>Vicús</td>
<td>668</td>
<td></td>
<td>3,989.40</td>
<td>1,052.70</td>
</tr>
<tr>
<td>Bigotes</td>
<td>1,589</td>
<td>1,963</td>
<td>3,167.66</td>
<td>2,141.52</td>
</tr>
<tr>
<td>Yapatera</td>
<td>2,533</td>
<td>2,947</td>
<td>6,081.75</td>
<td>5,421.60</td>
</tr>
<tr>
<td>Charanal</td>
<td>2,414</td>
<td>2,980</td>
<td>5,325.31</td>
<td>5,237.70</td>
</tr>
<tr>
<td>Ingenios Bs.As.</td>
<td>1,143</td>
<td>1,384</td>
<td>2,221.72</td>
<td>2,101.12</td>
</tr>
<tr>
<td>Malacasti</td>
<td>264</td>
<td>409</td>
<td>542.85</td>
<td>519.91</td>
</tr>
<tr>
<td>La Gallega</td>
<td>1,234</td>
<td>1,377</td>
<td>2,733.44</td>
<td>2,534.14</td>
</tr>
<tr>
<td>TOTAL</td>
<td>12119</td>
<td>14,260</td>
<td>30,758.67</td>
<td>26,195.60</td>
</tr>
</tbody>
</table>

Fuente: ATDR Alto Piura - Huancabamba

Los niveles de ingresos de la población rural están en función del volumen de sus cosechas y los precios de los productos agrícolas en el mercado interno que, por lo general, son bajos; situación que los mantiene en estado de pobreza y desempleo, generando problemas de orden social tales como:

- Desempleo en el área rural y migración de los jóvenes a la ciudad.
- Deserción escolar significativa.
- Desnutrición en la niñez.

Beneficiarios del Proyecto

Las familias beneficiarias directas del Proyecto Rehabilitación, Electrificación y Equipamiento de Pozos, en la I - etapa es 1300 familias más 592 de la II - etapa, suman un total de 1892 familias, multiplicados por 5 integrantes obtenemos una población acumulada de 9460 habitantes a beneficiarse con el proyecto, representando el 16 % de la población rural que depende de la actividad agrícola.

En el Cuadro Nº 03 Cobertura del Proyecto se muestra el número de familias y el área bajo riego a beneficiarse por pozo.

Leoncio Fortunato Ayal Sanchez
Ingeniero Agronomo
Rep. CIP N° 17847
### COBERTURA DEL PROYECTO - ALTO PIURA

**REHABILITACIÓN ELECTRIFICACIÓN Y EQUIPAMIENTO DE POZOS VALLE ALTO PIURA**

<table>
<thead>
<tr>
<th>N° Orden</th>
<th>N° Pozo</th>
<th>RELACIÓN DE POZOS</th>
<th>DISTRITO</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>SECTOR DE RIEGO MALACASI</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>162</td>
<td>C. R Tamarindo</td>
<td>Salitral</td>
</tr>
<tr>
<td><strong>SUPERFICIE - Ha.</strong></td>
<td>35</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td><strong>SECTOR DE RIEGO LA GALLEG A</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>35</td>
<td>Comité de Agric. Pozo El Salvador</td>
<td>Morropón</td>
</tr>
<tr>
<td>3</td>
<td>39</td>
<td>Pozo &quot;El Guabo&quot;</td>
<td>Morropón</td>
</tr>
<tr>
<td>4</td>
<td>38</td>
<td>Pozo &quot;El Tite&quot;</td>
<td>Morropón</td>
</tr>
<tr>
<td><strong>SUPERFICIE - Ha.</strong></td>
<td>137</td>
<td>129</td>
<td>54</td>
</tr>
<tr>
<td><strong>SECTOR DE RIEGO PABUR</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>Comité Santa Ángélica</td>
<td>La Matanza</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>Comité Agricultores Mica</td>
<td>La Matanza</td>
</tr>
<tr>
<td>7</td>
<td>96</td>
<td>Fundo San Vicente</td>
<td>La Matanza</td>
</tr>
<tr>
<td>8</td>
<td>145</td>
<td>Emilio Hilbeck Guzmán</td>
<td>La Matanza</td>
</tr>
<tr>
<td>9</td>
<td>123</td>
<td>Santo Tome Grande A</td>
<td>La Matanza</td>
</tr>
<tr>
<td>10</td>
<td>87</td>
<td>Miguel Valdez Ruiz</td>
<td>La Matanza</td>
</tr>
<tr>
<td>11</td>
<td>86</td>
<td>David Ravinovich León</td>
<td>La Matanza</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>Asoc. Cautivo de Ayavaca</td>
<td>La Matanza</td>
</tr>
<tr>
<td>13</td>
<td>142</td>
<td>C.R Los Carrasquillos</td>
<td>La Matanza</td>
</tr>
<tr>
<td>14</td>
<td>61</td>
<td>C.R Sauce</td>
<td>La Matanza</td>
</tr>
<tr>
<td><strong>SUPERFICIE - Ha.</strong></td>
<td>154</td>
<td>215</td>
<td>239</td>
</tr>
<tr>
<td><strong>SECTOR DE RIEGO CHARANAL</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>813</td>
<td>Asoc. Pequeños Agricultores Potrero Batanes</td>
<td>Chulucanas</td>
</tr>
<tr>
<td>16</td>
<td>27</td>
<td>Comité el Aterrizaie</td>
<td>Chulucanas</td>
</tr>
<tr>
<td>17</td>
<td>25</td>
<td>Comité de Riego Calle</td>
<td>Chulucanas</td>
</tr>
<tr>
<td>18</td>
<td>24</td>
<td>Comité de Riego Calle</td>
<td>Chulucanas</td>
</tr>
<tr>
<td>19</td>
<td>304</td>
<td>Antonio Medina Gonzáles y Carmen R. Seminario</td>
<td>Chulucanas</td>
</tr>
<tr>
<td>20</td>
<td>879</td>
<td>German Carrete Alvarado</td>
<td>Chulucanas</td>
</tr>
<tr>
<td><strong>SUPERFICIE - Ha.</strong></td>
<td>56</td>
<td>107</td>
<td>102</td>
</tr>
<tr>
<td><strong>SECTOR DE RIEGO YAPATERA</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>354</td>
<td>Comité Campo Herrera</td>
<td>Chulucanas</td>
</tr>
<tr>
<td>22</td>
<td>379</td>
<td>Paulina Gulman Elías</td>
<td>Chulucanas</td>
</tr>
<tr>
<td>23</td>
<td>446</td>
<td>Comité Algodonal</td>
<td>Chulucanas</td>
</tr>
<tr>
<td>24</td>
<td>285</td>
<td>Comité Mamacita y Arena</td>
<td>Chulucanas</td>
</tr>
<tr>
<td>25</td>
<td>684</td>
<td>Comité Latiro</td>
<td>Chulucanas</td>
</tr>
<tr>
<td>26</td>
<td>671</td>
<td>Señor Cautivo (Vaquería)</td>
<td>Chulucanas</td>
</tr>
<tr>
<td><strong>SUPERFICIE - Ha.</strong></td>
<td>142</td>
<td>120</td>
<td>154</td>
</tr>
<tr>
<td><strong>SECTOR DE RIEGO VICUS</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>31</td>
<td>Asoc. de Cond. Directos &quot;Tres Marías&quot;</td>
<td>Chulucanas</td>
</tr>
<tr>
<td>28</td>
<td>112</td>
<td>Cesar Huertas - Fundo Villa Jerusalén</td>
<td>Chulucanas</td>
</tr>
<tr>
<td>29</td>
<td>114</td>
<td>Comité Virgen de las Mercedes</td>
<td>Chulucanas</td>
</tr>
<tr>
<td>30</td>
<td>723</td>
<td>Agricola el Milagro Carlos León Trelles</td>
<td>Chulucanas</td>
</tr>
<tr>
<td><strong>SUPERFICIE - Ha.</strong></td>
<td>53</td>
<td>79</td>
<td>98</td>
</tr>
<tr>
<td><strong>SECTOR de RIEGO SANCOR</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>564</td>
<td>La Tercera Paccha</td>
<td>Chulucanas</td>
</tr>
<tr>
<td><strong>SUPERFICIE - Ha.</strong></td>
<td>15</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td>592</td>
<td>700</td>
<td>707</td>
</tr>
</tbody>
</table>

Mejorar 700 ha
Area a Rein incorporar 707 ha
Area Total Bajo Riego 1407 ha
2.10 Infraestructura de Servicios

Transporte.- El valle Alto Piura cuenta con carreteras troncales asfaltadas que une a las capitales de distritos: Chulucanas, la Matanza, Morropón. A partir de estas carreteras se comunican con los diferentes centros poblados y a los predios se llega por carreteras afirmadas y/o trochas carrozables. También, para comunicarse telefónicamente con otras ciudades, a nivel del Departamento de Piura, se cuenta con teléfonos públicos instalados en los diferentes caseríos.

Salud.- En estos últimos años se lograron construir en la mayoría de los pueblos, Centros de Salud, donde se atienden enfermedades de menor riesgo y los enfermos más críticos son evacuados en ambulancias a los hospitales de Chulucanas o Piura.

Educación.- Asimismo, en estos últimos años, se han construido locales modernos en los centros poblados más representativos y aulas de material noble en los caseríos; pero por razones de orden económico los pobladores se encuentran en condiciones precarias y, consecuentemente, se viene incrementando el ausentismo escolar año tras año.

2.11 Infraestructura de Riego Existente

La red de distribución de riego esta constituida por canales no revestidos y con escasas estructuras de distribución (partidores, toma laterales). Igualmente, en los pozos seleccionados se ha observado que el agua subterránea es conducida en su mayoría por canales en tierra y por canales revestidos o por tuberías solo en tramos cortos. Este hecho hace que se produzcan grandes pérdidas de agua por conducción que incrementan los costos de operación en el aprovechamiento de este recurso.

2.12 Infraestructura de Energía Eléctrica Existente

En el área del proyecto se cuenta con dos sub-estaciones eléctricas del sistema Interconectado con la red troncal Nacional - Central Hidroeléctrica del Mantaro, estas se localizan en Sector de Huápalas, Chulucanas y otra en Morropón; desde estas subestaciones se entrega la energía eléctrica a las principales capitales de los distritos: Chulucanas, La Matanza, Morropón, beneficiándose, además, otros centros poblados que se localizan en el recorrido del tendido de la línea de transmisión de energía eléctrica.

En base a esta red de energía eléctrica y de los pozos a electrificarse en la primera etapa, se ha procedido a localizar y evaluar los pozos para el presente proyecto.

2.13 Organización Representativa

Los agricultores del valle Alto Piura, están representados por sus Comisiones de Regantes (7) y la Junta de Usuarios que agrupa a más de 12 119 usuarios.

Para ser considerados beneficiarios del Proyecto Electrificación de pozos los comités de riego existente pasaran a constituirse en Asociaciones de Pequeños Agricultores que deberán estar inscritos en los Registros Públicos, como requisito para acogerse al préstamo Equipamiento de Pozos convenio AGROBANCO - MINAG

La Asociación de Productores de Mango, tiene como asociados a los productores del mencionado fruto en el valle, a través de la cual los agricultores se benefician con: capacitaciones, insumos (fertilizantes, pesticidas) y con pequeños préstamos.
La Asociación de Productores de Mango, tiene como asociados a los productores del mencionado fruto en el valle, a través de la cual los agricultores se benefician con: capacitaciones, insumos (fertilizantes, pesticidas) y con pequeños préstamos.

2.14 Valor de la Producción Agrícola Actual

La superficie agrícola cultivada, en las áreas de influencia de los pozos evaluados para su Electrificación II etapa, se vio limitada por: la escasa disponibilidad de agua superficial, el incremento constante el precio del combustible, el mal estado de los equipos de bombeo y por la mala situación económica de los agricultores. La poca disponibilidad del recurso hídrico solo ha permitido la siembra 700 Has, de las 1407 Has físicas bajo riego en el área del proyecto.

Para salvaguardar la campaña agrícola el Gobierno Regional, a través de la Dirección Regional de Agricultura y los Gobiernos Locales, dentro del Programa de Emergencia 2004 por la sequía viene apoyando en algunos sectores con: equipos de bombeo de cesión en uso, dotación de petróleo diesel y reparación de equipos de bombeo; con lo cual se está logrando, temporalmente, y en forma limitada atenuar el efectos de la sequía.

Los agricultores en estos últimos años vienen obteniendo bajo rentabilidad por sus cosechas, debido a la falta de asistencia técnica, escasos recursos económicos y por la falta de conocimiento del mercado, puesto que sus productos son comercializados a los intermediarios a precios bajos; factores que no les permite elevar sus niveles de vida.

Bajo estas consideraciones en el cuadro N° 04 se muestra el Valor Bruto de la Producción sin Proyecto, donde se obtiene de las 700 has cultivadas un volumen de producción de 3 078 TM con ingreso Bruto de S/ 2 488 200 con un Valor Neto de 438 200.
CUADRO N° 04

VALOR DE LA PRODUCCIÓN SIN PROYECTO

<table>
<thead>
<tr>
<th>Cultivo</th>
<th>Area (Ha)</th>
<th>Rendimiento Kg/Ha</th>
<th>Volumen TM</th>
<th>Precio S/. Kg</th>
<th>V.B.P Miles (S/.)</th>
<th>Costo Insumo (S/.-ha)</th>
<th>Total Miles - S/.</th>
<th>Agua (S/.-ha)</th>
<th>Total Miles - S/.</th>
<th>Total Miles - S/</th>
<th>V.N.P Miles - S/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limón</td>
<td>80</td>
<td>8.000</td>
<td>640,00</td>
<td>0,60</td>
<td>384,00</td>
<td>2200,00</td>
<td>176,00</td>
<td>1800,00</td>
<td>144,00</td>
<td>320,00</td>
<td>64,00</td>
</tr>
<tr>
<td>Mango</td>
<td>100</td>
<td>7.000</td>
<td>700,00</td>
<td>0,80</td>
<td>560,00</td>
<td>2700,00</td>
<td>270,00</td>
<td>1800,00</td>
<td>180,00</td>
<td>450,00</td>
<td>110,00</td>
</tr>
<tr>
<td>Plátano</td>
<td>70</td>
<td>8.000</td>
<td>560,00</td>
<td>0,50</td>
<td>280,00</td>
<td>1500,00</td>
<td>105,00</td>
<td>1500,00</td>
<td>105,00</td>
<td>210,00</td>
<td>70,00</td>
</tr>
<tr>
<td>Paila</td>
<td>7</td>
<td>6.000</td>
<td>42,00</td>
<td>0,60</td>
<td>25,20</td>
<td>1200,00</td>
<td>8,40</td>
<td>1800,00</td>
<td>12,60</td>
<td>21,00</td>
<td>4,20</td>
</tr>
<tr>
<td>Coco</td>
<td>3</td>
<td>10.000</td>
<td>30,00</td>
<td>0,50</td>
<td>15,00</td>
<td>1200,00</td>
<td>3,60</td>
<td>1800,00</td>
<td>5,40</td>
<td>9,00</td>
<td>6,00</td>
</tr>
<tr>
<td>Algodón</td>
<td>150</td>
<td>1.500</td>
<td>225,00</td>
<td>3,00</td>
<td>675,00</td>
<td>2300,00</td>
<td>357,00</td>
<td>1600,00</td>
<td>243,00</td>
<td>600,00</td>
<td>75,00</td>
</tr>
<tr>
<td>Maíz</td>
<td>250</td>
<td>3.000</td>
<td>750,00</td>
<td>0,60</td>
<td>450,00</td>
<td>500,00</td>
<td>125,00</td>
<td>1020,00</td>
<td>255,00</td>
<td>380,00</td>
<td>70,00</td>
</tr>
<tr>
<td>Yuca</td>
<td>10</td>
<td>8.000</td>
<td>80,00</td>
<td>0,50</td>
<td>40,00</td>
<td>1500,00</td>
<td>15,00</td>
<td>1500,00</td>
<td>15,00</td>
<td>30,00</td>
<td>10,00</td>
</tr>
<tr>
<td>Hortalizas</td>
<td>10</td>
<td>3.500</td>
<td>35,00</td>
<td>1,00</td>
<td>35,00</td>
<td>1300,00</td>
<td>2,00</td>
<td>1200,00</td>
<td>12,00</td>
<td>14,00</td>
<td>21,00</td>
</tr>
<tr>
<td>Frejol</td>
<td>20</td>
<td>800</td>
<td>18,00</td>
<td>1,50</td>
<td>24,00</td>
<td>200,00</td>
<td>4,00</td>
<td>600,00</td>
<td>12,00</td>
<td>16,00</td>
<td>8,00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>.700</td>
<td>3078</td>
<td>2488,20</td>
<td></td>
<td>1066,00</td>
<td>984,00</td>
<td>2050,00</td>
<td></td>
<td></td>
<td>438,20</td>
<td></td>
</tr>
</tbody>
</table>

Luís Fortunato Ayala Sánchez
Ingeniero Agrónomo
Reg. CIP N° 17847

By NC ND
3.0 EL PROYECTO

3.1 Planteamiento Hidráulico

El proyecto consiste en mejorar la infraestructura de captación de las aguas subterráneas mediante la ejecución de obras de rehabilitación - desarrollo, electrificación y equipamiento de 31 pozos, seleccionados en función a su proximidad al tendido de la red de distribución de energía eléctrica existente a nivel del valle Alto Piura.

Ejecutar el tendido de distribución de energía eléctrica en red secundaria o de media tensión, del punto de alimentación hacia los pozos para proceder a la instalación de los equipos de bombeo, constituidos por la bomba del tipo turbina de eje vertical y el motor eléctrico.

Ejecutar las obras civiles como construcción de: bases de bomba, ante-pozos, pozas de disipación y tramos cortos de canal en los pozos que lo requieran.

3.2 Demanda De Agua

Se logrará mejorar el riego de 700 Has y reincorporar 707 Has, en forma permanente; las mismas que con una segunda campaña de 293 Has, suman un total 1700 Has a cultivarse anualmente.

La demanda de agua de la cédula de cultivos propuesta es de 15 994 200 m³ que será cubierto en las condiciones críticas de extrema sequía, con la disponibilidad de agua subterránea a extraerse con los pozos a electrificarse.

En el Cuadro N° 05 se aprecia la demanda de agua por cultivo y total, en base al modulo de riego calculado para el Valle Alto Piura.

El plazo de ejecución de las obras propuestas, en el presente Proyecto, tendrá una duración de 4 meses.

3.3 Disponibilidad de agua para el Proyecto

3.3.1 Agua Superficial.

El recurso hídrico provendrá de la escorrentía superficial de los ríos: Bigote, Piura, Corral del Medio, La Gallega, Charanal, Yapatera, Quebrada Sancor y Sol Sol, que son captadas a través de tomas rústicas y conducidos por canales en tierra hacia las unidades de producción; disponiéndose así de agua para los riegos de "Machaco" y los primeros riegos de desarrollo del cultivo.

Sin embargo, para la situación más crítica de extrema sequía se tiene considerado el cubrir, con la explotación de los pozos, el total de la demanda de agua de los cultivos en plena producción eliminando de esta manera la vulnerabilidad del abastecimiento de agua para riego en el área del proyecto; incluso con sequías persistentes de carácter plurianual.
3.3.2 Agua Subterránea.

La disponibilidad del recurso provendrá de la explotación de los pozos tubulares a equiparse, que se encuentran distribuidos en los sectores de riego: Malacasí (1), La Gallega (3), Pabur (10), Charanal (6), Yapatera (6), Vicus (3) y Sancor (1).

Para cubrir la demanda de agua de la cédula de cultivos propuesta, en condiciones críticas de extrema sequía, esta será cubierta, únicamente, con la extracción del agua subterránea de los pozos, asumiendo un caudal promedio de 40 l/s, con un régimen de explotación anual del pozo: 15 horas / día, 24 días / mes y 10 meses / año, con lo cual obtenemos un volumen anual extraído de: 16 070 400 m³ / año, recurso que permitirá satisfacer en forma permanente el abastecimiento de agua para el riego de los cultivos propuestos en las condiciones más críticas.

En el Cuadro Nº 05 se presenta la demanda de agua por cultivos, la disponibilidad del agua subterránea en las consideraciones descritas y el costo por m³ de extracción del agua subterránea por cultivo.

3.4 Criterios de Evaluación

El Proyecto en su concepción ha considerado los siguientes criterios:

- Que, los pozos se encuentren próximos a la red de distribución de energía eléctrica existente en el Valle Alto Piura.
- Que, los pozos sean utilizeables y de uso colectivo. Los usuarios deben encontrarse debidamente organizados, a fin de irrigar la mayor superficie en beneficio del mayor número de familias.
- Que, en base a la evaluación preliminar realizada exista factibilidad técnica para mejorar la captación de las aguas subterráneas, mediante los trabajos de rehabilitación y desarrollo de pozos; con el método de inyección de aire comprimido (Air Liff) y la aplicación de aditivos químicos.
- Que, en algunos pozos se considera la construcción de las bases del equipo, la construcción de ante pozo, pozas de disipación y la construcción de algún tramo corto de canal.

Leoncio Fortunato Ayala Sánchez
Ingeniero Agrónomo
Reg. CIF Nº 17847
CUADRO Nº 05

DEMANDA Y COSTOS DE AGUA SUBTERRÁNEA POR CULTIVOS

<table>
<thead>
<tr>
<th>CULTIVOS</th>
<th>Área (Ha)</th>
<th>Modulo de Reigo m³/ha</th>
<th>Demanda Total (m³)</th>
<th>Costo del Agua S/. / m³</th>
<th>Costo Total del agua S/.</th>
<th>Costo Agua S/. / Ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limón</td>
<td>80</td>
<td>12.600</td>
<td>1.008.000</td>
<td>0,08</td>
<td>80.640</td>
<td>1.008,00</td>
</tr>
<tr>
<td>Mango</td>
<td>100</td>
<td>12.600</td>
<td>1.260.000</td>
<td>0,08</td>
<td>100.800</td>
<td>1.008,00</td>
</tr>
<tr>
<td>Plátano</td>
<td>70</td>
<td>18.000</td>
<td>1.260.000</td>
<td>0,08</td>
<td>100.800</td>
<td>1.440,00</td>
</tr>
<tr>
<td>Palta</td>
<td>7</td>
<td>12600</td>
<td>88.200</td>
<td>0,08</td>
<td>7.056</td>
<td>1.008,00</td>
</tr>
<tr>
<td>Algodón</td>
<td>500</td>
<td>10.800</td>
<td>5.400.000</td>
<td>0,08</td>
<td>432.000</td>
<td>864,00</td>
</tr>
<tr>
<td>Maíz</td>
<td>500</td>
<td>6.800</td>
<td>3.400.000</td>
<td>0,08</td>
<td>272.000</td>
<td>544,00</td>
</tr>
<tr>
<td>Yuca</td>
<td>100</td>
<td>15.000</td>
<td>1.500.000</td>
<td>0,08</td>
<td>104.000</td>
<td>1.040,00</td>
</tr>
<tr>
<td>Hortalizas</td>
<td>50</td>
<td>8.000</td>
<td>400.000</td>
<td>0,08</td>
<td>32.000</td>
<td>640,00</td>
</tr>
<tr>
<td>Maíz *</td>
<td>150</td>
<td>6.800</td>
<td>1.020.000</td>
<td>0,08</td>
<td>81.600</td>
<td>544,00</td>
</tr>
<tr>
<td>Frejol *</td>
<td>143</td>
<td>6.000</td>
<td>858.000</td>
<td>0,08</td>
<td>66.640</td>
<td>480,00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1.700</td>
<td></td>
<td>15.994.200</td>
<td></td>
<td>1.279.536</td>
<td></td>
</tr>
</tbody>
</table>

* Segunda Campaña
* Fuente A.T.D.R Alto Piura

DISPONIBILIDAD DE AGUAS SUBTERRANEAS

<table>
<thead>
<tr>
<th>Nº de Pozos</th>
<th>RÉGIMEN DE EXPLOTACIÓN</th>
<th>Volumen Anual m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>l/s 40</td>
<td>m³/h 144</td>
</tr>
</tbody>
</table>

Rendimiento Promedio = 40 l/s = 144 m³/h x Pozo
3.5 Impacto Ambiental

En las condiciones actuales la actividad agrícola en el valle Alto Piura, es considerada como de alto riesgo frente a la amenaza de los periodos de sequías que ciclicamente se presentan en la costa norte del Perú. Los pozos tubulares existentes se encuentran algunos inoperativos aumentando el riesgo en la actividad, de presentarse una época seca y otros se encuentran con equipos de bombeo accionados por motores a combustión de petróleo diesel, que conllevan altos costos de operación y mantenimiento, fuertes ruidos y emisión de gases contaminantes del medio ambiente.

La ejecución de las obras proyectadas en la zona permitirá reducir la vulnerabilidad, debida al alto riesgo en el abastecimiento de agua superficial, al aumentar la disponibilidad de agua para el riego con el uso alterno e intensivo del aprovechamiento del agua subterránea proveniente de los pozos tubulares existentes.

La ejecución del proyecto eliminará localmente la emisión de gases contaminantes a la atmósfera evitando en forma directa el daño a la salud pública por la aspiración de los elementos cancerígenos que contiene y en forma indirecta al evitar la contaminación por ruido y disminuir las emanaciones de monóxido de carbono que viene originando el recalentamiento global contribuyendo de esta forma a contrarrestar el cambio climático que se viene presentando

3.5.1 Impactos Ambientales Positivos

La ejecución de la obra tiene los siguientes impactos positivos al medio ambiente:

- Empleo de energía limpia cuya generación proviene, generalmente, de centrales hidroeléctricas del Sistema Interconectado Nacional y no de centrales térmicas de petróleo residual que son utilizadas, eventualmente, en horas de máxima demanda. De este modo se disminuye la emisión global de monóxido de carbono a la atmósfera.

- Disminución de emanaciones de monóxido de carbono producto de la combustión interna de los motores a explosión que serán remplazados por eléctricos y que viene originando el cambio climático de la tierra por el recalentamiento global y la destrucción progresiva y permanente de la capa de ozono.

- Reducción de la emisión de gases contaminantes a la atmósfera que permite la disminución de problemas alérgicos, bronco-pulmonares y oncológicos de incidencia directa en la salud pública.

- Contribución a la purificación de la atmósfera a través de la fotosíntesis de los cultivos a instalarse, mediante el mejoramiento de riego 700 Has, la reincorporación de 707 Has no cultivadas por efecto de la sequía y la instalación de la campaña chica en 293 Has, sumando una superficie anual de 1700 Has.

- Eliminación de la contaminación local por ruido al proceder a la reconversión de motores de explosión altamente ruidosos a motores eléctricos totalmente silenciosos.

- Como consecuencia de elevar la calidad de vida de la población beneficiaria, al obtener mejores cosechas y aumentar sus ingresos; se elimina la preocupación y el estrés que vive la población en situación de pobreza originada por la sequía.
3.5.2 Impactos Ambientales Negativos

La ejecución de la obra no tiene impactos negativos significativos al medio ambiente; sin embargo, es necesario puntualizar algunas recomendaciones al ejecutor para un correcto desarrollo de la obra durante su proceso constructivo y en la operación de la infraestructura de captación de las aguas subterráneas para su aprovechamiento con fines de riego.

- Se debe considerar la eliminación de escombros producto de la ejecución de las obras para que no se vulnere el estado inicial del medio ambiente y el paisajístico.
- Existe el riesgo de accidentes de trabajo durante la ejecución de la obra, principalmente, por la generación de ruido por el equipo de rehabilitación. Es conveniente establecer un lenguaje de símbolos que sea practicado por los operadores y operarios de los equipos.
- Las labores de excavación de los ante pozos deben estar precedidas de las medidas de seguridad en cuanto a la estabilización de la superficie de corte mediante encofrados que eviten los derrumbes. Debe ser realizado por personal especializado y con el equipo adecuado.
- Los pozos, el equipo de bombeo en algunos casos, son vulnerables a las inundaciones, por lo tanto es necesario tomar las medidas de protección de la infraestructura de captación de aguas subterráneas con el fin de evitar pérdidas significativas.
- Cumplir con las normas de seguridad, durante la ejecución de las obras de rehabilitación, equipamiento y tendido de la red primaria, montaje e instalación de los equipos eléctricos.

3.6 Descripción de las Obras a Ejecutarse

3.6.1 Revisión y Selección de Equipos de Bombeo

Considerándose que los equipos se encuentran almacenados por espacio de algunos años, es necesario revisarlos y seleccionar aquellos que se encuentren en buen estado, a fin de entregar a los beneficiarios un equipo de bombeo debidamente operativo.

3.6.2 Diagnóstico de pozos

Para la evaluación de los pozos se consideró, la proximidad del pozo al tendido de la línea de distribución de energía eléctrica, existente a nivel del valle del Alto Piura; que los pozos, preferentemente, sean de uso colectivo y que los usuarios se encuentren debidamente organizados.

Bajo estas consideraciones y en coordinación con los presidente de las Comisiones de Regantes se seleccionaron 31 pozos, comprendidos en los 7 sectores de riego que a continuación se describe:
**Sector de Riego Malacási**

La red de distribución energía eléctrica que se utilizará es la que abastece a los centros poblados de Malacási - Salitral, donde el tendido de esta línea eléctrica cruza por los terrenos de cultivo, localizándose el pozo Tamarindo IRHS:162.

Las características técnicas de los pozos son:

<table>
<thead>
<tr>
<th>Años de perforaciones</th>
<th>1965</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profundidades</td>
<td>20 a 15 m</td>
</tr>
<tr>
<td>Diámetro de tubería forro</td>
<td>15&quot;</td>
</tr>
<tr>
<td>Niveles estáticos</td>
<td>6.00 m</td>
</tr>
<tr>
<td>Caudales referenciales</td>
<td>35l/s</td>
</tr>
<tr>
<td>Equipo de Bombeo</td>
<td>bomba instalada</td>
</tr>
<tr>
<td>Fabricación</td>
<td>China 8&quot;</td>
</tr>
<tr>
<td>Potencias</td>
<td>40 – HP</td>
</tr>
<tr>
<td>Capacidad de las bombas</td>
<td>50 l/s</td>
</tr>
</tbody>
</table>

De la evaluación realizada, se ha programado la rehabilitación y desarrollo de pozo, construcción de bases de bombas.

**Sector de Riego La Gallega.**

En este sector, la red de distribución energía eléctrica a utilizarse, es el tendido que abastece a los centros poblados de la Huaquilla y Polvazal, el cual pasa por los terrenos agrícolas, donde se localizan 03 pozos a electrificar (IRHS: 035, 039, 088).

Las características técnicas de los pozos son:

<table>
<thead>
<tr>
<th>Año de perforación</th>
<th>1969 – 1983</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profundidad</td>
<td>28 a 30 m</td>
</tr>
<tr>
<td>Diámetro tubería</td>
<td>15&quot;a 18&quot;</td>
</tr>
<tr>
<td>Nivel estático</td>
<td>2 a 6 m</td>
</tr>
<tr>
<td>Caudales Referencia</td>
<td>40 l/s</td>
</tr>
<tr>
<td>Equipo de Bombeo</td>
<td>3 instalados: 1 motores operativos y 2 malogrados</td>
</tr>
<tr>
<td>Fabricación</td>
<td>China – USA</td>
</tr>
<tr>
<td>Potencia</td>
<td>30 – 40 HP</td>
</tr>
<tr>
<td>Capacidad de las bombas</td>
<td>30 – 60 l/s</td>
</tr>
</tbody>
</table>

Los trabajos programados son: Rehabilitación y desarrollo de 02 pozos el Guabo y el Tite, en este último se a programado la construcción de poza de disipación y canal.

**Sector de Riego Pabur**

La red de distribución de energía eléctrica que abastece a los centros poblados de La Matanza, Pabur y Carrasquillo, pasa por el sector de riego en cuyos campos de cultivos se localizan 10 pozos programados para su equipamiento y electrificación (IRHS: 09, 036, 096, 145, 123, 087, 086,011, 142, 061).

Las características técnicas de los pozos son:

<table>
<thead>
<tr>
<th>Año de perforación</th>
<th>1960 – 2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profundidad</td>
<td>30 a 42 m</td>
</tr>
<tr>
<td>Diámetro tubería</td>
<td>15&quot;a 18&quot;</td>
</tr>
<tr>
<td>Caudales Referenciales</td>
<td>Equipo de Bombeo</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>30 a 60 l/s</td>
<td>10 instalados: 7 motores operativos y 3 sin motor</td>
</tr>
</tbody>
</table>

En base a la evaluación realizada a los pozos, se ha programado la rehabilitación y desarrollo en 04 pozos y en 6 pozos solo se ha programado la prueba de bombeo y su equipamiento por encontrarse estos operativos y estabilizados, además en el pozos San Vicente se ha programado la construcción de bases, poza de disipación y canal.

**Sector de Riego Charanal.**

La línea de distribución de energía eléctrica a captarse será del centro poblado de Batanes para electrificar 06 pozos seleccionados para su equipamiento y electrificación (IRHS: 813, 024, 025, 027, 304 y 879).

Las características técnicas de los pozos son:

- **Año de perforación**: 1965 – 2000
- **Profundidad**: 25 a 30 m
- **Diámetro tubería**: 15" a 19"
- **Nivel estático**: 3 a 6 m.
- **Caudales referenciales**: 25 a 50 l/s
- **Equipo de Bombeo**: 6 instalados: 6 motores operativos
- **Fabricación**: China - USA
- **Potencia**: 25 – 58 HP
- **Capacidad de las bombas**: 30 – 50 l/s

De la evaluación de los pozos se ha programado realizar los trabajos de Rehabilitación y desarrollo de 02 pozos, y en 04 pozos se efectuarán la prueba de bombeo del equipamiento por encontrarse estos pozos operativos y estabilizados. Además se ha programado construir un antepozo, poza de disipación y tramo de canal Antonio Medina y Carmen Seminario.

**Sector de Riego Yapatera**

La línea de distribución energía eléctrica que abastece a la ciudad y centros poblados de Chulucanas, Yapatera - Sol Sol, en donde la mayor longitud del tendido de postes va paralelo por la trocha carrozable que une a éstas localidades, pasando por los campos agrícolas del sector de riego Yapatera, en el cual se localizaron 06 pozos factibles a electrificarse (IRHS: 446, 379, 378, 285, 684, 671).

Las características técnicas de los pozos son:

- **Año de perforación**: 1980 – 1995
- **Profundidad**: 27 a 40 m
- **Diámetro tubería**: 15" a 18"
- **Nivel estático**: 3 a 8 m.
- **Caudales Referenciales**: 30 a 70 l/s
- **Equipo de Bombeo**: 6 instalados: 5 motores operativos y 1 sin motor
- **Fabricación**: China - USA
Potencia : 25-100 HP
Capacidad de las bombas : 30-70 l/s

En base a la evaluación de los pozos se ha programado realizar el desarrollo de 05 pozos y
01 pozo solo se efectuará la bomba a prueba de bombeo y su equipamiento.

**Sector de Riego Vicus.**

Este sector es uno de los más críticos por no contar con agua superficial, la actividad agrícola
se desarrolla tan sólo con el uso del agua subterránea que proviene de los pozos tubulares
cuyos equipos de bombeo son accionados con motores diesel, hecho que les incrementa los
costos de producción en comparación a los otros sectores que producen con el uso de agua
superficial y, complementariamente, con el aprovechamiento del agua subterránea.

La línea de distribución de energía eléctrica que sale de la sub.-Estación eléctrica de Huápalas, pasa por los terrenos agrícolas de Huápalas hasta llegar a los centros poblados de la Encantada y Vicus, donde se localizaron 04 pozos factibles a electrificarse (IRHS: 031, 112, 114 y 723).

Las características técnicas de los pozos son:

<table>
<thead>
<tr>
<th>Año de perforación</th>
<th>1965 – 1997</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profundidad</td>
<td>35 a 60 m</td>
</tr>
<tr>
<td>Diámetro tubería</td>
<td>15&quot; a 18&quot;</td>
</tr>
<tr>
<td>Nivel estático</td>
<td>3 a 7 m.</td>
</tr>
<tr>
<td>Caudales Referenciales</td>
<td>40 a 70 l/s</td>
</tr>
<tr>
<td>Equipo de Bombeo</td>
<td>4 instalados: 03 motores operativos</td>
</tr>
<tr>
<td>Fabricación</td>
<td>China</td>
</tr>
<tr>
<td>Potencia</td>
<td>22 – 58 HP</td>
</tr>
<tr>
<td>Capacidad de las bombas</td>
<td>30 – 60 l/s</td>
</tr>
</tbody>
</table>

Los trabajos a realizarse son: Rehabilitación y desarrollo de 1 pozo, y la prueba de bombeo de 03 pozos

**Sector de Riego Sancor**

La línea de distribución de energía eléctrica a captarse, para la electrificación del pozo la Tercera con IRHS: 564, será del Centro Poblado de Paccha

Las características técnicas de los pozos son:

<table>
<thead>
<tr>
<th>Año de perforación</th>
<th>1998</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profundidad</td>
<td>50 m</td>
</tr>
<tr>
<td>Diámetro tubería</td>
<td>15&quot;</td>
</tr>
<tr>
<td>Nivel estático</td>
<td>6 m.</td>
</tr>
<tr>
<td>Caudales Referenciales</td>
<td>40 l/s</td>
</tr>
<tr>
<td>Equipo de Bombeo</td>
<td>Bomba instalados, sin motor</td>
</tr>
<tr>
<td>Fabricación</td>
<td>China</td>
</tr>
<tr>
<td>Potencia</td>
<td>40 HP</td>
</tr>
<tr>
<td>Capacidad de las bombas</td>
<td>40 l/s.</td>
</tr>
</tbody>
</table>

[Signatura]

**Eduardo Fortunato Ayala Sánchez**

Ingeniero Agrónomo

Reg. CIP N° 17647
En base a la evaluación del pozos se ha programado realizar los trabajos de: Rehabilitación y desarrollo, además se construirá las bases de la bomba poza de disipación y tramo de canal

En el Anexo I, Cuadro N° 01, se presenta la relación de los 31 pozos seleccionados para su electrificación, por sectores de riego con sus características técnicas y las actividades a ejecutarse en cada uno de ellos; así como la superficie y familias beneficiadas.

3.6.3 Obras de Rehabilitación y Desarrollo de Pozos

Acondicionamiento del Terreno Alrededor del Pozo.

Esta actividad se refiere a los trabajos de limpieza y nivelación de terreno alrededor del pozo, en una área de 10 m x 10 m (100 m²) con la finalidad de eliminar las malezas, material orgánico, que impida la fácil operación de la maquinaria a utilizarse en los trabajos de rehabilitación y desarrollo del pozo, instalaciones de las tuberías, ejes y cuerpos de bombas, correspondientes al montaje desmontaje de los equipos de bombeo.

Traslado de Equipo de Limpieza y Prueba de Bombeo.

Esta actividad será de rutina comprenderá el traslado de la compresora, equipo de prueba con sus respectivos accesorios y herramientas a los pozos a rehabilitarse y probarse, debiéndose contar para ello con una movilidad de apoyo.

Desmontaje de Equipo de Bombeo Existente.

Esta actividad se efectuará en los pozos que dispongan de bomba instaladas, para ello se contará con un equipo de izaje, llaves cadenas y otras herramientas que les permita desmontar los tramos de tubería, ejes y cuerpos de bomba. La evaluación preliminar de los 31 pozos seleccionados determinó que tienen las bombas instaladas; de los cuales se procederá a desmontar 30 equipos

Esta actividad comprenderá, el desmontaje del cabezal de engranaje, cabezal de descarga, tubería de impulsión, ejes, estabilizadores y el cuerpo de bomba; lo mismo que deberán ser entregados a los usuarios para su resguardo.

Rehabilitación y Desarrollo de Pozos.

Consistirá en la recuperación de fondo es decir la extracción de los sedimentos, detrítus y/o materiales extraños, que han ingresado al interior del pozo…como consecuencia del desprendimiento y/o arrastre de materiales del acuífero. Asimismo, consiste en la agitación, en forma alterna mediante la inyección de aire comprimido que permita un redesarrollo del área de filtros con el consiguiente mejoramiento de las características hidráulicas de funcionamiento del pozo. Para tal efecto, se empleará el sistema de inyección de aire comprimido (Air Lift) el mismo que se realiza con el empleo de una compresora, tubería de inyección de aire y tubería aductora debiéndose controlar la presión de trabajo, para evitar posibles roturas del tubo forro por tratarse, en su mayoría, de pozos antiguos que superaron su período de vida útil.

Para la ejecución de estas actividades se deberá preverse de grava < a ½” Ø en un volumen de 3.0 m³, que se aplicara en caso de presentarse desenso de material en el proceso de los trabajos recuperación de fondo y desarrollo del pozo, para diluir las arcillas y cabonatos.
encrustados en las ranuras del tubo forro se aplicara 25 kg de aditivo químico. Las horas programadas de compresora por pozos es de 19 horas. Esta actividad se ejecutará en 16 pozos y en los 15 restantes solo se ha programado pruebas de bombeo, por encontrarse estos últimos operativos y estabilizados.

**Prueba de Bombeo a Caudal Variable.**

Concluida con la rehabilitación, limpieza del pozo y, una ves, estabilizado el mismo, se efectuará una prueba de bombeo a caudal variable, la cual tendrá como mínimo 03 regímenes de bombeo, cuantificando en cada uno de éstos, las medidas de caudal y el nivel dinámico correspondiente al caudal debidamente estabilizado, con el fin de determinar las condiciones óptimas de explotación del pozo. Esta actividad se realizará por un lapso de 24 horas de bombeo por pozo, donde se definirá el caudal de explotación y el nivel dinámico que permita determinar la selección del modelo del equipo de bombeo a instalarse.

**Análisis Físico – Químico de la Muestra del Agua.**

Las tomas de muestras de agua se realizarán durante el proceso de la prueba de bombeo del pozo, la muestra será envasada en recipientes adecuados para su traslado a los laboratorios oficiales, donde realizarán los análisis físico químicos completos y su clasificación por su aptitud para el riego. Para efecto del proyecto se ha considerado realizar el análisis de agua de los 31 pozos programados.

**Instalación del Equipo de bombeo Existente o Definitivo.**

Una vez rehabilitado el pozo y realizada la prueba de bombeo, se procederá a instalar el equipo de bombeo existente en caso que los trabajos de electrificación vayan a sufrir demoras que puedan afectar el riego de los cultivos instalados. Caso contrario, cuando los trabajos de electrificación se puedan ejecutar en un tiempo menor a los 15 días y los cultivos no requieran riego, se procederá a instalar el equipo de bombeo definitivo.

**Estudio de Factibilidad Técnico Económico y Financiera del Equipamiento.**

Considerando que los equipos de bombeo se otorgarán en calidad de venta directa a crédito a los beneficiarios y en condiciones excepcionales de financiamiento, será necesario elaborar un expediente técnico que determine la viabilidad del equipamiento y el flujo de caja que sustente el financiamiento de la inversión, que acompañado a la documentación legal, justificará el otorgamiento del préstamo de capitalización ante la entidad bancaria intermediaria del MINAG.

En el Cuadro Nº 06 se muestra el presupuesto base de las obras de rehabilitación, desarrollo y de equipamiento de los 31 pozos que conforman el programa y que han sido descritas en los párrafos precedentes. El análisis y estructura de los costos unitarios empleados para la elaboración del Presupuesto Base se encuentran debidamente detallados en el ANEXO II 3.6.4 **Obras Civiles.**

En base a la evaluación de los pozos se ha visto por conveniente incluir en la programación la construcción de obras civiles como son: bases de bomba, pozas de disipación, tramos cortos de canal y la construcción de ante pozos actividades que a continuación se describen:
Construcción de Bases de Bombas.- Comprenderá la Excavación de la cimentación de 2 pozas de forma cuadrada en el extremo del pozo distanciados como mínimo a 3.0 m entre ellos, donde se vaciará concreto ciclópeo $F'c= 140 \text{ Kg/cm}^2 +30\% \text{ PM}$, para posteriormente vaciar la sobre base donde se empotrarán 2 rieles o vigas de algarrobo labradas, que soportarán el peso de la bomba del cabezal eléctrico; las características del diseño son:

Cimentación: $L=1 \text{ m}$, $A = 1 \text{ m}$, $H= 0.80 \text{ m}$
Sobre Base : $L= 1 \text{ m}$, $A= 1 \text{ m}$, $H= 0.20 \text{ m}$
Longitud de Rieles: $< 3 \text{ m}$
Pozos Programados: Tamarindo IRHS 162, San Vicente IRHS 096, La Tercera IRHS 564

Pozas de Disipación.- para disipar la energía del agua extraída del pozo, se ha propuesto la construcción de esta estructura que comprenderá de una ventana de salida de 0.50 m de ancho con un muro de 0.20 – 0.30 de altura, donde entregará el agua al canal de salida, las características de diseño son:

Solera : $L= 2.0 \text{ m}$, $A = 150$, $E = 0.15 \text{ m}$
Muros : $L= 2.0 \text{ m}$, $H= 1.0 \text{ m}$, $E = 0.15 \text{ m}$
Concreto $F'c= 175 \text{ kg/cm}^2$
Acero $Fy = 4200 \text{ kg/cm}^2$
Pozas programadas: San Vicente IRHS 096, El Tite IRHS 038 Antonio Medina - Carmen Seminario (Pozos Santa Isabel) IRHS 304, La Tercera IRHS 564.

Construcción de Ante Pozo.- Esta estructura se a programado a ejecutar en el pozos que presenta derrumbe en su área circundante y para protegerlo de las inundaciones se construirá un rol de ladrillo de cabeza con cimentación de concreto ciclópeo; cuyas características serán:

Cimentación: $D = 1.30 \text{ H} = 0.30 \text{ m}$, $E = 0.30 \text{ m}$
Concreto $: F'c= 140 \text{ kg/cm}^2 + 30\% \text{ de PM}$
Rol de Ladrillo: $H = 1.70 \text{ m}$ diámetro 1.30 M (de cabeza )
Pozo Programado: Antonio Medina – Carmen Seminario IRHS 304

Canal de Salida.- su ejecución se a propuesto para evitar que el agua que sale de la poza de disipación no inunde el área del pozo y ocasionar erosiones o derrumbes internos que podrían producir la pérdida de verticalidad del pozo tubular; las características de diseño son:

Relleno : $L = 30 \text{ m}$, $A = 1 \text{ m}$, $E = 0.30 \text{ m}$
Solera $L= 30 \text{ m}$, $A = 0.70 \text{ m}$, $E = 0.10 \text{ m}$
Muro de Ladrillo Soga: $L= 30 \text{ m}$, $H= 0.30 \text{ m}$
Terrajeo mortero 1:5: 18 m²
Pozos Programados: Tite IRHS 038, San Vicente IRHS 096, Antonio Medina-Carmen Seminario IRHS 304 La Tercera IRHS 564

En el Anexo Nº 01 Cuadro Nº 01 se presenta la relación de pozos seleccionados y las actividades a ejecutarse, como son la rehabilitación- Desarrollo de 16 pozos, en los 15 pozos restantes solo se ha programado la ejecución de la prueba de bombeo por encontrase operativos y estabilizados, así mismo se presenta la ejecución de obras civiles en algunos pozos.

Flete.

Esta actividad comprenderá el traslado de los equipos de bombeo del almacen del Ministerio de Agricultura-Lima a un almacen en la ciudad de Chulucanas y de este almacen mediante transporte local se llevará al lugar del pozo para su instalación respectiva; así mismo para la ejecución de las obras civiles se ha considerado el flete de los materiales de construcción del lugar de compra a la obra.
3.6.5 Cronograma de Ejecución de Obrá

Los trabajos programados de rehabilitación, desarrollo y el equipamiento de los pozos tubulares a electrificarse en los diferentes Sectores de Riego, demandará un periodo de ejecución de 120 días, contabilizándose a partir de la entrega del primer desembolso por parte de la entidad que financie el presente proyecto, como se aprecia en el Cronograma de ejecución de obras y actividades, cuadro N° 07.

4.0 PRESUPUESTO DE OBRA.

4.1 Presupuesto Base

El presupuesto base se sustenta en la ejecución de obras de rehabilitación, desarrollo, prueba de bombeo, equipamiento y obras civiles, como son: Construcción de base, pozas de disipación, ante pozo y canal de salida programados en los pozos críticos. Bajo estas consideraciones se presenta el Resumen del Presupuesto, para el equipamiento de 31 pozos I Etapa:

<table>
<thead>
<tr>
<th>Actividades</th>
<th>Monto S/.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trabajos Preliminares</td>
<td>21 352.50</td>
</tr>
<tr>
<td>Rehabilitación y Desarrollo de Pozo</td>
<td>120 841.30</td>
</tr>
<tr>
<td>Obras Civiles</td>
<td>14 499.30</td>
</tr>
<tr>
<td>Flete</td>
<td>26 870.00</td>
</tr>
<tr>
<td>Dirección Técnica</td>
<td>54 400.00</td>
</tr>
<tr>
<td>Costo Directo</td>
<td>237 963.10</td>
</tr>
<tr>
<td>Gastos Generales (10%)</td>
<td>23 796.31</td>
</tr>
<tr>
<td>Utilidad (10%)</td>
<td>23 796.31</td>
</tr>
<tr>
<td>SUB TOTAL</td>
<td>285 565.72</td>
</tr>
<tr>
<td>IGV (19%)</td>
<td>54 255.59</td>
</tr>
<tr>
<td>COSTO TOTAL</td>
<td>339 811.31</td>
</tr>
</tbody>
</table>

En el Cuadro N° 06 se presenta en detalle el Presupuesto Base de las obras de Rehabilitación Desarrollo de 31 pozos y de las obras Civiles complementarias, de acuerdo a las actividades a ejecutarse; incluyendo en éste el Flete y la Dirección Técnica.

En el cuadro N° 07 se presenta el Cronograma de Ejecución de las Actividades y Obras de Rehabilitación, Desarrollo y Equipamiento de los 31 pozos y de las Obras Civiles complementarias, cuya ejecución ha sido programada en 120 días.

4.2 Costos Unitarios

Se elaboraron los costos unitarios por partidas específicas de las obras de rehabilitación y obras civiles, teniendo en cuenta el rendimiento que demanda la ejecución de cada actividad y los precios de los insumos establecidos en el mercado regional, en cuanto al pago de personal calificado y no calificado se han considerado los haberes y jornales que se pagan en los programas sociales de la Región (Anexo II).
4.3 Cronograma de Desembolso

Los desembolsos se efectuarán en un período de 04 meses, considerándose para el inicio de obra un adelanto del 30 % del monto total del presupuesto base, el cual permitirá adquirir materiales de obra y cumplir con la adquisición de otros bienes y servicios de manera oportuna. En el Cuadro Nº 08, se aprecia el cronograma de desembolsos.

4.4 Requerimiento de Insumos.

Mano de Obra.- Para la ejecución de los trabajos programados se requerirá de personal calificado con experiencia en desmontaje y montaje de equipos de bombeo, rehabilitación de pozos, prueba de bombeo y electricistas para ejecutar los trabajos de: tendido de los cables de media tensión, instalaciones de los transformadores, cajas de control, conexión al cabezal eléctrico y la prueba respectiva del equipo.

Disponibilidad de Maquinaria
Las compresoras.- serán alquiladas con sus respectivos implementos, tales como son: mangueras y tuberías de inyección de aire, tuberías succión de 4" de diámetro con una longitud de 70 m., herramientas para el montaje y desmontaje de las tuberías y equipo de izaje. Asimismo en el precio deberá estar incluido el pago del operador, más el combustible.

El Equipo de Prueba deberá estar constituido por una bomba de tipo turbina de eje vertical con capacidad de elevación de 30-40 m y un motor adecuado para las condiciones hidráulicas del pozo; además se contará con implementos de medición de velocidad de motor (tacómetro), sonda electrificada, tubería PVC-½" de diámetro, cubas y cronómetro para medición de caudal y tiempo, respectivamente.

En el cuadro Nº 09 se indican los requerimientos e insumos para la ejecución de las obras de rehabilitación, desarrollo y equipamiento de 31 pozos y de las obras civiles respectivamente, se encuentran conformados por lo requerido en: Mano de Obra, Materiales, Equipo-Herramientas, Flete y Dirección Técnica.

Económic Fortunato Ayala Sinchez
Ingieniero Agrónomo
Reg. CIP N° 17847
CUADRO Nº 06

*PRESUPUESTO BASE
REHABILITACIÓN Y DESARROLLO DE POZOS - OBRAS CIVILES
VALLE - ALTO PIURA

<table>
<thead>
<tr>
<th>ITEM</th>
<th>TRABAJOS PRELIMINARES</th>
<th>PARTIDA</th>
<th>UNIDAD</th>
<th>CANT.</th>
<th>COSTOS S/. PARCIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Alquiler de Almacén, Guardia - Almacen</td>
<td>Meses</td>
<td>4</td>
<td>2,900.00</td>
<td>11,200.00</td>
</tr>
<tr>
<td>1.2</td>
<td>Acondicionamiento de Equipo MINAG</td>
<td>Equipo</td>
<td>31</td>
<td>270.00</td>
<td>8,370.00</td>
</tr>
<tr>
<td>1.3</td>
<td>Diagnóstico de Pozos</td>
<td>Pozo</td>
<td>31</td>
<td>57,50</td>
<td>1,762.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.0</th>
<th>OBRAS DE REHABILITACIÓN DE POZOS</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Acondicionamiento de Terreno</td>
<td>m²</td>
<td>3100</td>
<td>0,40</td>
<td>1,240.00</td>
</tr>
<tr>
<td>2.2</td>
<td>Transporte de Equipo de Limpieza</td>
<td>Pozo</td>
<td>16</td>
<td>250.00</td>
<td>4,000.00</td>
</tr>
<tr>
<td>2.3</td>
<td>Desmontaje de Equipo - Bombeo Existente</td>
<td>Pozo</td>
<td>30</td>
<td>334,50</td>
<td>10,035.00</td>
</tr>
<tr>
<td>2.4</td>
<td>Limpieza y Recuperación de Fondo</td>
<td>Pozo</td>
<td>16</td>
<td>1,395.00</td>
<td>22,320.00</td>
</tr>
<tr>
<td>2.5</td>
<td>Desarrollo de Pozo</td>
<td>Equipo</td>
<td>31</td>
<td>282.00</td>
<td>8,742.00</td>
</tr>
<tr>
<td>2.6</td>
<td>Transporte de Equipo - Prueba de Bombeo</td>
<td>Equipo</td>
<td>31</td>
<td>1,057.10</td>
<td>32,770.10</td>
</tr>
<tr>
<td>2.7</td>
<td>Prueba de Bombeo</td>
<td>Equipo</td>
<td>31</td>
<td>383,20</td>
<td>11,879.20</td>
</tr>
<tr>
<td>2.8</td>
<td>Instalación de Equipos - Bombeo Existente o Definitivo</td>
<td>Equipo</td>
<td>31</td>
<td>100.00</td>
<td>3,000.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.0</th>
<th>OBRAS CIVILES - POZOS</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Construcción de Bases de Bombas (3)</td>
<td>m³</td>
<td>4</td>
<td>14,8</td>
<td>21,455.80</td>
</tr>
<tr>
<td>3.2</td>
<td>Excavación de cimentación</td>
<td>m³</td>
<td>6</td>
<td>222,26</td>
<td>1,333.74</td>
</tr>
<tr>
<td>3.3</td>
<td>Preparación de Solución</td>
<td>m³</td>
<td>7.2</td>
<td>25,53</td>
<td>191,016.00</td>
</tr>
<tr>
<td>3.4</td>
<td>Preparación de Agua</td>
<td>m³</td>
<td>16</td>
<td>59</td>
<td>900.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.1</th>
<th>CONSTRUCCIÓN DE ANTE POZO</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>Excavación para rol (1)</td>
<td>m³</td>
<td>5,8</td>
<td>89.84</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Concreto Fc = 175 kg/cm²</td>
<td>m³</td>
<td>1,47</td>
<td>222,26</td>
<td>326,766.30</td>
</tr>
<tr>
<td>3.4</td>
<td>Albañilería de ladrillo</td>
<td>m²</td>
<td>8,28</td>
<td>46,77</td>
<td>387,255.60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.3</th>
<th>CONSTRUCCIÓN - POZOS DE DISIPACIÓN (4)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1</td>
<td>Excavación</td>
<td>m³</td>
<td>1,6</td>
<td>14,8</td>
<td>26,84</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Concreto Fc = 175 kg/cm²</td>
<td>m³</td>
<td>5,64</td>
<td>244,72</td>
<td>1,360,220.8</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Encofrado y desencofrado</td>
<td>m³</td>
<td>85</td>
<td>26,63</td>
<td>1485,68</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Acero Fy = 4200 kg/cm²</td>
<td>kg</td>
<td>272,2</td>
<td>3,68</td>
<td>1011,70</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Terrajeo mortero 1:5</td>
<td>m³</td>
<td>56</td>
<td>21,32</td>
<td>1193,92</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.4</th>
<th>CONSTRUCCIÓN DE CANAL (4)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.1</td>
<td>Rallado</td>
<td>m²</td>
<td>36</td>
<td>14,8</td>
<td>532,8</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Concreto Fc = 140 kg/cm²</td>
<td>m³</td>
<td>8,4</td>
<td>224,72</td>
<td>1897,548</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Albañilería</td>
<td>m²</td>
<td>72</td>
<td>20</td>
<td>2160</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Terrazo</td>
<td>m²</td>
<td>72</td>
<td>21,32</td>
<td>1193,92</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.0</th>
<th>FLETES</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Materiales de Construcción</td>
<td>Kg</td>
<td>10,400</td>
<td>0,00</td>
<td>520.00</td>
</tr>
<tr>
<td>4.2</td>
<td>Transporte de Equipo de Lima - Chulucanas</td>
<td>Equipo</td>
<td>31</td>
<td>700.00</td>
<td>21,700.00</td>
</tr>
<tr>
<td>4.3</td>
<td>Transporte de Almacén de Chulucanas - Pozo</td>
<td>Equipo</td>
<td>31</td>
<td>150.00</td>
<td>4,500.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5.0</th>
<th>DIRECCIÓN TÉCNICA</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Ingenieros Residenciales - POZOS</td>
<td>Mes</td>
<td>4</td>
<td>4,000.00</td>
<td>16,000.00</td>
</tr>
<tr>
<td>5.2</td>
<td>Asociados (2)</td>
<td>Mes</td>
<td>8</td>
<td>2,500.00</td>
<td>20,000.00</td>
</tr>
<tr>
<td>5.3</td>
<td>Estudio Técnico Económico Legal</td>
<td>Unidad</td>
<td>31</td>
<td>400.00</td>
<td>1,240.00</td>
</tr>
<tr>
<td>5.4</td>
<td>Capacitación</td>
<td>Curso</td>
<td>2</td>
<td>3,000.00</td>
<td>6,000.00</td>
</tr>
</tbody>
</table>

| COSTO DIRECTO | 237,963,10 |
| Gastos Generales (10 % CD) | 23,796.31 |
| Utilidad (10 % CD) | 23,796.31 |
| Sub Total | 285,555.72 |
| IGV (19 %) | 54,255,58 |
| COSTO TOTAL | 339,811,29 |
CUADRO Nº 07

CRONOGRAMA DE ACTIVIDADES

REHABILITACIÓN Y DESARROLLO DE 31 POZOS II ETAPA - VALLE ALTO PIURA

<table>
<thead>
<tr>
<th>ITE M</th>
<th>PARTIDA</th>
<th>UNIDAD</th>
<th>CANT.</th>
<th>M E S E S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>1.0</td>
<td>TRABAJOS PRELIMINARES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Alquiler Almacén, guardián y</td>
<td>Meses</td>
<td>4</td>
<td>xxx</td>
</tr>
<tr>
<td></td>
<td>Almacenero</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Acondicionamiento de Equipos -</td>
<td>Equipo</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MINAG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Diagnóstico de Pozos</td>
<td>Pozos</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>OBRAS DE REHABILITACIÓN DE POZOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Acondicionamiento de Terreno</td>
<td>m²</td>
<td>3100</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Transporte de Equipo de Limpieza</td>
<td>Pozo</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Desmontaje Equipo-Bombeo Existente</td>
<td>Pozo</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Limpieza y Recuperación de Fondo</td>
<td>Pozo</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>Desarrollo de Pozo</td>
<td>Pozo</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>Transporte Equipo-Prueba Bombeo</td>
<td>Equipo</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>2.10</td>
<td>Prueba de Bombeo</td>
<td>Pozo</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>2.11</td>
<td>Instal. Equip-Bombeo Existente/Definitivo</td>
<td>Equipo</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>2.12</td>
<td>Análisis Físico Químico - Muestras Agua</td>
<td>Muestra</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>OBRAS CIVILES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>FLETE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>DIRECCIÓN TÉCNICA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PARTIDA</td>
<td>UNIDAD</td>
<td>CANT.</td>
<td>COSTOS S/.</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UNITARIO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>TRABAJOS PRELIMINARES</td>
<td></td>
<td></td>
<td>21,352,50</td>
</tr>
<tr>
<td>1.1</td>
<td>Alquiler de Almacén, Guardarías - Almacenero</td>
<td>Meses</td>
<td>4</td>
<td>2,800,00</td>
</tr>
<tr>
<td>1.2</td>
<td>Acondicionamiento de Equipo MINAG</td>
<td>Equipo</td>
<td>31</td>
<td>270,00</td>
</tr>
<tr>
<td>1.3</td>
<td>Diagnóstico de Pozos</td>
<td>Pozo</td>
<td>31</td>
<td>57,50</td>
</tr>
<tr>
<td>2.0</td>
<td>OBRAS DE REHABILITACIÓN DE POZOS</td>
<td></td>
<td></td>
<td>120,841,30</td>
</tr>
<tr>
<td>2.1</td>
<td>Acondicionamiento de Terreno</td>
<td>m²</td>
<td>3100</td>
<td>0,90</td>
</tr>
<tr>
<td>2.2</td>
<td>Desmontaje de Equipo - Bombé Existe</td>
<td>Pozo</td>
<td>16</td>
<td>26,750,00</td>
</tr>
<tr>
<td>2.3</td>
<td>Limpieza y Recuperación de Fondo</td>
<td>Pozo</td>
<td>16</td>
<td>1,130,00</td>
</tr>
<tr>
<td>2.4</td>
<td>Desarrollo de Pozo</td>
<td>Pozo</td>
<td>16</td>
<td>6,927,00</td>
</tr>
<tr>
<td>2.5</td>
<td>Transporte de Equipo - Prueba de Bombeo</td>
<td>Equipo</td>
<td>31</td>
<td>46,200</td>
</tr>
<tr>
<td>2.6</td>
<td>Prueba de Bombeo</td>
<td>Pozo</td>
<td>31</td>
<td>2,830,00</td>
</tr>
<tr>
<td>2.7</td>
<td>Instalación de Equipo - Bombé Existente o Defini</td>
<td>Equipo</td>
<td>31</td>
<td>2,830,00</td>
</tr>
<tr>
<td>2.8</td>
<td>Asistencia Técnico Químico - Muestras de Agua</td>
<td>Muestra</td>
<td>31</td>
<td>100,00</td>
</tr>
<tr>
<td>3.0</td>
<td>OBRAS CIVILES</td>
<td></td>
<td></td>
<td>14,499,30</td>
</tr>
<tr>
<td>4.0</td>
<td>FLETE</td>
<td></td>
<td></td>
<td>28,670,00</td>
</tr>
<tr>
<td>4.1</td>
<td>Materiales de Construcción</td>
<td>Kg</td>
<td>10,400</td>
<td>0,05</td>
</tr>
<tr>
<td>4.2</td>
<td>Transporte de Equipo de Lima - Chulucanas</td>
<td>Equipo</td>
<td>31</td>
<td>2,700,00</td>
</tr>
<tr>
<td>4.3</td>
<td>Transporte de Almacén de Chulucanas - Pozo</td>
<td>Equipo</td>
<td>31</td>
<td>1,500,00</td>
</tr>
<tr>
<td>5.0</td>
<td>DIRECCIÓN TÉCNICA</td>
<td></td>
<td></td>
<td>54,400,00</td>
</tr>
<tr>
<td>5.1</td>
<td>Ingeniero Residente - POZOS</td>
<td>Mes</td>
<td>4</td>
<td>4,000</td>
</tr>
<tr>
<td>5.2</td>
<td>Asistente (2)</td>
<td>Mes</td>
<td>8</td>
<td>2,500</td>
</tr>
<tr>
<td>5.3</td>
<td>Estudio Técnico Económico Legal</td>
<td>Unidad</td>
<td>31</td>
<td>400</td>
</tr>
<tr>
<td>5.4</td>
<td>Capacitación</td>
<td>Curso</td>
<td>2</td>
<td>3,000</td>
</tr>
<tr>
<td>COSTO DIRECTO</td>
<td></td>
<td></td>
<td></td>
<td>237,963,10</td>
</tr>
<tr>
<td>GASTOS GENERALES (10 % CD)</td>
<td></td>
<td></td>
<td></td>
<td>23,796,31</td>
</tr>
<tr>
<td>Utilidad (10 % CD)</td>
<td></td>
<td></td>
<td></td>
<td>23,796,31</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td></td>
<td></td>
<td>285,555,72</td>
</tr>
<tr>
<td>IGV (19%)</td>
<td></td>
<td></td>
<td></td>
<td>54,255,59</td>
</tr>
<tr>
<td>COSTO TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>339,811,31</td>
</tr>
</tbody>
</table>
CUADRO Nº 09

REQUERIMIENTO DE INSUMOS
REHABILITACIÓN, DESARROLLO Y OBRAS CIVILES DE 31 POZOS - II ETAPA VALLE ALTO PIURA

<table>
<thead>
<tr>
<th>PART</th>
<th>TRABAJOS PRELIMINARES</th>
<th>PARTIDA</th>
<th>UNIDAD</th>
<th>CANT.</th>
<th>COSTOS S/.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>Alquiler de Almacen, Guardiania - Almacenero</td>
<td>Meses</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
<td>Acondicionamiento de Equipo MINAG -</td>
<td>Equipo</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
<td>Diagnostico de Pozos</td>
<td>Pozos</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MANO DE OBRA</td>
<td>H-H</td>
<td>1440.00</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
<td>Almacenero</td>
<td>H-H</td>
<td>1280.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
<td>Técnico</td>
<td>H-H</td>
<td>2088.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
<td>Capataz</td>
<td>H-H</td>
<td>241.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
<td>Operario</td>
<td>H-H</td>
<td>1530.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
<td>Oficial</td>
<td>H-H</td>
<td>2621.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
<td>Peón</td>
<td>H-H</td>
<td>4065.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATERIALES</td>
<td>Gln</td>
<td>1208.01</td>
<td>9.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>Petróleo</td>
<td>Gln</td>
<td>15.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29</td>
<td>Grasa</td>
<td>Lbs</td>
<td>31.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29</td>
<td>Aditivo Químico</td>
<td>Kg</td>
<td>400.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29</td>
<td>Grava &lt; 3/4&quot;</td>
<td>M3</td>
<td>48.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29</td>
<td>Arena</td>
<td>M3</td>
<td>21.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29</td>
<td>Piedra Chancada</td>
<td>M3</td>
<td>11.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29</td>
<td>Piedra Mediana</td>
<td>M3</td>
<td>2.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
<td>Acero Fy =4200 kg/cm2</td>
<td>Kg</td>
<td>272.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
<td>Alambre nº 16</td>
<td>Kg</td>
<td>4.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
<td>Ladrillo</td>
<td>Milar</td>
<td>4.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
<td>Cemento</td>
<td>Bolsas</td>
<td>211.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
<td>Madera</td>
<td>P2</td>
<td>310.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
<td>Clavo</td>
<td>Kgs</td>
<td>9.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
<td>Rieles</td>
<td>M L</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EQUIPOS -HERRAMIENTAS</td>
<td>H-M</td>
<td>748.00</td>
<td>18.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
<td>Compresora</td>
<td>H-M</td>
<td>304.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
<td>Prueba de bombeo</td>
<td>H-E</td>
<td>744.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
<td>Equipo de Verticalidad</td>
<td>H-E</td>
<td>31.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
<td>Equipo de Medición</td>
<td>H-E</td>
<td>1674.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
<td>Herramientas</td>
<td>H-E</td>
<td>31.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
<td>Accesorios Electricos</td>
<td>Glib</td>
<td>31.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MUESTRA DE AGUA</td>
<td>Muestra</td>
<td>31.00</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
<td>Análisis Fisico-Químico</td>
<td>Muestra</td>
<td>31.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLETE</td>
<td>641.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
<td>Materiales de Construcción</td>
<td>Kg</td>
<td>10.400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
<td>Transporte de Equipo de Lima - Chulucanas</td>
<td>Equipo</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
<td>Transporte de Almacén de Chulucanas - Pozo</td>
<td>Equipo</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIRECCIÓN TÉCNICO</td>
<td>Meses</td>
<td>4</td>
<td>4.000.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
<td>Asistente (2)</td>
<td>Meses</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
<td>Estudio Técnico Económico Legal</td>
<td>Und</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Capacitación</td>
<td>Curso</td>
<td>2</td>
<td>300.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL - COSTO DIRECTO</td>
<td>237.963.10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.0 BENEFICIOS DEL PROYECTO.

Al mejorar la infraestructura de captación de las aguas subterráneas, repotenciando el sistema de extracción con la reconversión de los motores diesel a eléctricos, permitirá a los beneficiarios del proyecto elevar sus niveles de ingreso por la mayor eficiencia del equipo de extracción y su menor costo de operación y mantenimiento.

El valor de la tierra se verá incrementado al contar con el recurso hídrico en forma permanente, pudiéndose, de este modo, programar la producción de dos campañas agrícolas al año.

5.1 Valor de la Producción Agrícola con Proyecto

Superficie Cultivada.

La ejecución del Proyecto permitirá mejorar el riego de 1 100 Has, reincorporar 1 450 Has y producir una segunda campaña de 650 Has, sumando una superficie anual 3 200 Has; en las cuales los agricultores tienden a incrementar sus áreas de cultivos de frutales, limón, mango y palta, por la creciente demanda interna y externa. Hecho que les permite obtener ingresos durante todos los meses del año.

En el cuadro Nº 10 se muestra la cédula de cultivo y demanda de agua.

Valor de la Producción.

Para la producción de las 1700 Has se prevé contar con el apoyo que vienen brindando de las organizaciones regionales, entidades privadas y organismos no gubernamentales, en cuanto a la asistencia técnica e insumos necesarios que conllevan a incrementar los rendimientos de los cultivos. IGualmente, con la participación organizada de los agricultores en Cadenas Productivas se logrará otter sus productos en los mercados y obtener por ellos buenos precios estimándose así un valor bruto de la producción S/ 9 743 550 para el año de plena producción.

En el cuadro Nº 11 se aprecia la evolución del valor de la producción con en los años de operación del proyecto y, en el cuadro Nº 13, el valor de la producción en el año de plena producción, a partir del 03 año de operación del proyecto.

Costos de Producción.

Esta determinado por los insumos que provendrá del apoyo de los Programas de Fondos Rotarios u de otros organismos de apoyo, para efectos del proyecto se estima por hectáreas - cultivos.

El costo de agua subterránea se determina en base a la tarifa eléctrica, los costos de operación y mantenimiento y los compromisos de pago que ascienden a un costo de S/ 13.0 hora-maquina; que considerando un caudal promedio de 144 m³/hora (50 l/s) por pozo, se obtiene un costo de S/ 0.08/m³. El costo total estimado asciende a la suma de S/1 279 536 por concepto de la explotación de 15 994 200 m³ de agua subterránea. Cuadro Nº 05.

Leoncio Fortunato Ayala Sánchez
Ingeniero Agrónomo
Reg. CIF Nº 17847
<table>
<thead>
<tr>
<th>CULTIVOS</th>
<th>Areas (ha)</th>
<th>ENE</th>
<th>FEB</th>
<th>MAR</th>
<th>ABR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AGO</th>
<th>SET</th>
<th>OCT</th>
<th>NOV</th>
<th>DIC</th>
<th>Total Anual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua Subt</td>
<td>1700</td>
<td>1.542.000</td>
<td>1.789.700</td>
<td>2.530.700</td>
<td>2.255.700</td>
<td>1.870.700</td>
<td>1.662.000</td>
<td>1.020.500</td>
<td>1.009.700</td>
<td>850.700</td>
<td>701.900</td>
<td>348.600</td>
<td>16994200</td>
<td></td>
</tr>
<tr>
<td>UISP de Agua Subt</td>
<td></td>
<td>1.540.080</td>
<td>1.740.960</td>
<td>2.466.360</td>
<td>2.232.000</td>
<td>1.796.760</td>
<td>1.674.000</td>
<td>446.400</td>
<td>1.116.000</td>
<td>1.116.000</td>
<td>903.960</td>
<td>714.240</td>
<td>446.400</td>
<td>16193180</td>
</tr>
<tr>
<td>No. 10</td>
<td></td>
</tr>
<tr>
<td>permanentes</td>
<td></td>
</tr>
<tr>
<td>Tomate</td>
<td>80</td>
<td>80.000</td>
<td>88.000</td>
<td>88.000</td>
<td>88.000</td>
<td>88.000</td>
<td>80.000</td>
<td>80.000</td>
<td>104.000</td>
<td>104.000</td>
<td>80.000</td>
<td>64.000</td>
<td>64.000</td>
<td>1.008.000</td>
</tr>
<tr>
<td>Fongo</td>
<td>100</td>
<td>100.000</td>
<td>110.000</td>
<td>110.000</td>
<td>110.000</td>
<td>110.000</td>
<td>100.000</td>
<td>100.000</td>
<td>130.000</td>
<td>130.000</td>
<td>130.000</td>
<td>80.000</td>
<td>80.000</td>
<td>1.260.000</td>
</tr>
<tr>
<td>Lactan</td>
<td>70</td>
<td>105.000</td>
<td>84.000</td>
<td>105.000</td>
<td>105.000</td>
<td>70.000</td>
<td>105.000</td>
<td>105.000</td>
<td>175.000</td>
<td>175.000</td>
<td>105.000</td>
<td>70.000</td>
<td>56.000</td>
<td>1.260.000</td>
</tr>
<tr>
<td>Salsa</td>
<td>7</td>
<td>7.000</td>
<td>7.700</td>
<td>7.700</td>
<td>7.700</td>
<td>7.000</td>
<td>7.000</td>
<td>7.000</td>
<td>9.100</td>
<td>9.100</td>
<td>9.100</td>
<td>5.600</td>
<td>5.600</td>
<td>88.200</td>
</tr>
<tr>
<td>Fajo</td>
<td>500</td>
<td>1.000.000</td>
<td>1.000.000</td>
<td>750.000</td>
<td>650.000</td>
<td>1.000.000</td>
<td>1.000.000</td>
<td>750.000</td>
<td>650.000</td>
<td>1.000.000</td>
<td>1.000.000</td>
<td>750.000</td>
<td>650.000</td>
<td>3.400.000</td>
</tr>
<tr>
<td>Frutas</td>
<td>50</td>
<td>150.000</td>
<td>100.000</td>
<td>75.000</td>
<td>75.000</td>
<td>150.000</td>
<td>100.000</td>
<td>75.000</td>
<td>75.000</td>
<td>150.000</td>
<td>100.000</td>
<td>75.000</td>
<td>75.000</td>
<td>400.000</td>
</tr>
<tr>
<td>Papel</td>
<td>500</td>
<td>1.250.000</td>
<td>1.150.000</td>
<td>1.000.000</td>
<td>750.000</td>
<td>650.000</td>
<td>600.000</td>
<td>150.000</td>
<td>150.000</td>
<td>150.000</td>
<td>150.000</td>
<td>150.000</td>
<td>150.000</td>
<td>150.000</td>
</tr>
<tr>
<td>Vaca</td>
<td>100</td>
<td>200.000</td>
<td>120.000</td>
</tr>
<tr>
<td>Saiz *</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Rajol *</td>
<td>143</td>
<td></td>
</tr>
</tbody>
</table>

Leopoldo Fortunato Ayala S/n hcr
Ingeniero Agrónomo
Reg. CIP N° 17847
CUADRO N° 11

PROYECCIÓN DEL VALOR DE LA PRODUCCIÓN CON PROYECTO

<table>
<thead>
<tr>
<th>Cultivo</th>
<th>Area Ha</th>
<th>Rendimiento Kg/Ha</th>
<th>Volumen TM</th>
<th>Precio S/. Kg</th>
<th>V.B.P Miles S/.</th>
<th>Costo S/.</th>
<th>Sub-Total</th>
<th>Sub-Total</th>
<th>TOTAL S/.</th>
<th>V.N.P Miles S/.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limón - Años 1</td>
<td>1 80</td>
<td>12000</td>
<td>960</td>
<td>0,60</td>
<td>576</td>
<td>3500,00</td>
<td>280,00</td>
<td>1008,00</td>
<td>80,64</td>
<td>360,64</td>
</tr>
<tr>
<td>Limón - Años 2</td>
<td>2 80</td>
<td>14000</td>
<td>1120</td>
<td>0,60</td>
<td>672</td>
<td>4500,00</td>
<td>360,00</td>
<td>1008,00</td>
<td>80,64</td>
<td>440,64</td>
</tr>
<tr>
<td>Limón - Años 3</td>
<td>3 80</td>
<td>16000</td>
<td>1280</td>
<td>0,60</td>
<td>768</td>
<td>4500,00</td>
<td>360,00</td>
<td>1008,00</td>
<td>80,64</td>
<td>440,64</td>
</tr>
<tr>
<td>Mango - 1</td>
<td>1 100</td>
<td>8000</td>
<td>800</td>
<td>0,80</td>
<td>640</td>
<td>2000,00</td>
<td>200,00</td>
<td>1008,00</td>
<td>100,80</td>
<td>300,80</td>
</tr>
<tr>
<td>Mango - 2</td>
<td>2 100</td>
<td>14000</td>
<td>1400</td>
<td>0,80</td>
<td>1120</td>
<td>3500,00</td>
<td>350,00</td>
<td>1008,00</td>
<td>100,80</td>
<td>450,80</td>
</tr>
<tr>
<td>Mango - 3</td>
<td>3 100</td>
<td>16000</td>
<td>1600</td>
<td>0,80</td>
<td>1280</td>
<td>4000,00</td>
<td>400,00</td>
<td>1008,00</td>
<td>100,80</td>
<td>500,80</td>
</tr>
<tr>
<td>Plátano - 1</td>
<td>1 70</td>
<td>6000</td>
<td>420</td>
<td>0,50</td>
<td>210</td>
<td>1500,00</td>
<td>150,00</td>
<td>1440,00</td>
<td>100,80</td>
<td>205,80</td>
</tr>
<tr>
<td>Plátano - 2</td>
<td>2 70</td>
<td>10000</td>
<td>700</td>
<td>0,50</td>
<td>350</td>
<td>2500,00</td>
<td>250,00</td>
<td>1440,00</td>
<td>100,80</td>
<td>275,80</td>
</tr>
<tr>
<td>Plátano - 3</td>
<td>3 70</td>
<td>15000</td>
<td>1050</td>
<td>0,50</td>
<td>525</td>
<td>3500,00</td>
<td>350,00</td>
<td>1440,00</td>
<td>100,80</td>
<td>345,80</td>
</tr>
<tr>
<td>Palta - 1</td>
<td>1 7</td>
<td>6000</td>
<td>42</td>
<td>0,60</td>
<td>25,2</td>
<td>1550,00</td>
<td>10,00</td>
<td>1008,00</td>
<td>7,06</td>
<td>17,91</td>
</tr>
<tr>
<td>Palta - 2</td>
<td>2 7</td>
<td>9000</td>
<td>63</td>
<td>0,80</td>
<td>37,8</td>
<td>2500,00</td>
<td>17,00</td>
<td>1008,00</td>
<td>7,06</td>
<td>24,56</td>
</tr>
<tr>
<td>Palta - 3</td>
<td>3 7</td>
<td>14000</td>
<td>98</td>
<td>0,60</td>
<td>58,8</td>
<td>3500,00</td>
<td>24,50</td>
<td>1008,00</td>
<td>7,06</td>
<td>31,56</td>
</tr>
<tr>
<td>Algodón</td>
<td>500</td>
<td>2500</td>
<td>1250</td>
<td>3,00</td>
<td>3750</td>
<td>4500,00</td>
<td>864,00</td>
<td>432,00</td>
<td>2682,00</td>
<td>1068,00</td>
</tr>
<tr>
<td>Maíz</td>
<td>500</td>
<td>6000</td>
<td>3000</td>
<td>0,80</td>
<td>1800</td>
<td>3000,00</td>
<td>544,00</td>
<td>272,00</td>
<td>1772,00</td>
<td>28,00</td>
</tr>
<tr>
<td>Yuca</td>
<td>100</td>
<td>10000</td>
<td>1000</td>
<td>0,50</td>
<td>500</td>
<td>3000,00</td>
<td>1040,00</td>
<td>104,00</td>
<td>404,00</td>
<td>95,00</td>
</tr>
<tr>
<td>Hortalizas</td>
<td>50</td>
<td>4000</td>
<td>200</td>
<td>1,00</td>
<td>200</td>
<td>3000,00</td>
<td>640</td>
<td>32,00</td>
<td>182,00</td>
<td>18,00</td>
</tr>
<tr>
<td>Maíz*</td>
<td>150</td>
<td>6000</td>
<td>900</td>
<td>0,80</td>
<td>540</td>
<td>3000,00</td>
<td>544,00</td>
<td>81,60</td>
<td>531,60</td>
<td>8,40</td>
</tr>
<tr>
<td>Frejol*</td>
<td>143</td>
<td>15000</td>
<td>214,5</td>
<td>1,50</td>
<td>321,75</td>
<td>1500,00</td>
<td>480,00</td>
<td>88,64</td>
<td>231,43</td>
<td>38,61</td>
</tr>
</tbody>
</table>

* Segunda Campaña

Total -Año 1 | 1700 | 8786,50 | 8562,95 | 5460,35 | 1279,54 | 6739,89 | 1823,06 |
Total -Año 2 | 1700 | 9847,50 | 9291,55 | 5787,00 | 1279,54 | 7046,54 | 2245,01 |
Total - Año 3 - 20 | 1700 | 10592,50 | 9743,55 | 5894,00 | 1279,54 | 7173,54 | 2570,01 |
CUADRO Nº 12

**VALOR DE LA PRODUCCIÓN CON PROYECTO**

**AÑO DE PLENA PRODUCCIÓN**

<table>
<thead>
<tr>
<th>Cultivo</th>
<th>Area Ha</th>
<th>Rendimiento Kg/Ha</th>
<th>Volumen TM</th>
<th>Precio S/. / Kg</th>
<th>V.B.P Miles S/.</th>
<th>Insumo S/. / Ha</th>
<th>Sub-Total Insumo</th>
<th>Agua S/. Ha</th>
<th>Sub-Total agua</th>
<th>Costo Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limón</td>
<td>80</td>
<td>16000</td>
<td>1280</td>
<td>0,60</td>
<td>768</td>
<td>4500,00</td>
<td>360,00</td>
<td>1008,00</td>
<td>80,64</td>
<td>440,64</td>
</tr>
<tr>
<td>Mango</td>
<td>100</td>
<td>16000</td>
<td>1600</td>
<td>0,80</td>
<td>1280</td>
<td>4000,00</td>
<td>400,00</td>
<td>1008,00</td>
<td>100,80</td>
<td>500,80</td>
</tr>
<tr>
<td>Plátano</td>
<td>70</td>
<td>15000</td>
<td>1050</td>
<td>0,50</td>
<td>525</td>
<td>3500,00</td>
<td>245,00</td>
<td>1440,00</td>
<td>100,80</td>
<td>345,80</td>
</tr>
<tr>
<td>Palta</td>
<td>7</td>
<td>14000</td>
<td>98</td>
<td>0,60</td>
<td>58,8</td>
<td>3250,00</td>
<td>245,00</td>
<td>1400,00</td>
<td>7,08</td>
<td>31,56</td>
</tr>
<tr>
<td>Algodón</td>
<td>500</td>
<td>2500</td>
<td>1250</td>
<td>3,00</td>
<td>3750</td>
<td>4500,00</td>
<td>2250,00</td>
<td>394,00</td>
<td>432,00</td>
<td>2682,00</td>
</tr>
<tr>
<td>Maíz</td>
<td>500</td>
<td>6000</td>
<td>3000</td>
<td>0,60</td>
<td>1800</td>
<td>3000,00</td>
<td>1500,00</td>
<td>544,00</td>
<td>272,00</td>
<td>1772,00</td>
</tr>
<tr>
<td>Yuca</td>
<td>100</td>
<td>10000</td>
<td>1000</td>
<td>0,50</td>
<td>500</td>
<td>3000,00</td>
<td>300,00</td>
<td>1040,00</td>
<td>104,00</td>
<td>404,00</td>
</tr>
<tr>
<td>Hortalizas</td>
<td>50</td>
<td>4000</td>
<td>200</td>
<td>1,00*</td>
<td>200</td>
<td>3000,00</td>
<td>150,00</td>
<td>640,00</td>
<td>32,00</td>
<td>182,00</td>
</tr>
<tr>
<td>Maíz*</td>
<td>150</td>
<td>6000</td>
<td>900</td>
<td>0,60</td>
<td>540</td>
<td>3000,00</td>
<td>450,00</td>
<td>544,00</td>
<td>81,60</td>
<td>531,60</td>
</tr>
<tr>
<td>Frejol*</td>
<td>143</td>
<td>1500</td>
<td>214,5</td>
<td>1,50</td>
<td>321,75</td>
<td>1500,00</td>
<td>214,50</td>
<td>480,00</td>
<td>68,64</td>
<td>283,14</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1700</td>
<td>10592,5</td>
<td>9744</td>
<td>1,50</td>
<td>321,75</td>
<td>1500,00</td>
<td>214,50</td>
<td>480,00</td>
<td>68,64</td>
<td>283,14</td>
</tr>
</tbody>
</table>

V.B.P = Valor Bruto de la Producción
V.N.P = Valor Neto de la Producción
Los costos de producción estimados para el año de plena producción resultan de la sumatoria de los costo de insumos (S/ 6 894 000), más los costos del agua subterránea (S/2 033 020) suma que asciende a S/. 10 950 920. Cuadro N° 12

El Valor Neto de la Producción.

Resulta de la diferencia del Valor Bruto de la Producción menos los costos de producción obteniéndose así un Valor Neto, para el año de plena producción, de S/ 6 315 930; el cual demuestra el incremento significativo en relación al Valor Neto de la Producción sin proyecto, en estas condiciones se dará lugar a la generación de empleo, al mejor nivel de vida de la población rural y la Región se beneficiará con los ingresos generados por los impuestos derivados de la fase productiva del proyecto. Cuadro N° 12

5.2 Disponibilidad de Equipos de Bombeo

El Ministerio de Agricultura – Lima, en el año de 1995, procede a la recepción de un lote de Maquinaria Agrícola de República Popular China, entre las cuales habían equipos de bombeo para pozos profundos, del tipo turbina de eje vertical con motor eléctrico; disponiéndose, actualmente, de aproximadamente 750 equipos, en sus almacenes. Los mismos que se encuentran en calidad de venta al contado o a crédito en condiciones muy favorables de financiamiento. Las características y cantidades de los equipos de bombeo que se dispone, se muestran en el cuadro N° 13

Requerimientos de Equipo de Bombeo.

El requerimiento preliminar de los equipos de bombeo indicados en el Anexo 1, cuadro N° 2, se ajustará de acuerdo a los resultados de las pruebas de bombeo, la cual permitirá seleccionar el modelo de equipo más adecuado de la disponibilidad de equipos con que cuenta el Ministerio de Agricultura en sus almacenes.

5.2 Incremento de la Producción y del Ingreso Neto

El valor de la producción sin proyecto es de S/ 3 905 000 el cual se incrementará a la suma de S/ 12 790 470 en el primer año de operación del proyecto; lo que representa un incremento de 327.5 %. En el séptimo año, de plena producción del proyecto, el valor de la producción ascendía a la suma de S/. 15 240 970 lo que representa un incremento de 390%

El Valor Neto de la Producción Agrícola se verá incrementado de S/. 840 000 sin proyecto a un nivel de S/. 4 562 430 en el primer año de operación del proyecto, lo que representa un incremento de 543 %. A partir del séptimo año de operación, se presenta la plena producción, en que el ingreso neto asciende a S/. 6 315 930 que representa un incremento de 752 % Hecho que demuestra la sostenibilidad del proyecto al incrementar los ingresos de las familias durante la vida útil, dinamizando así la generación de empleo y la economía local.

La reducción significativa en los costos de operación y mantenimiento de los equipos de bombeo accionados con motores diesel de S/. 30.00 a S/. 10.00 con la reconversión a bombas nuevas accionadas con motores eléctricos, origina un mayor incremento en el ingreso neto.
CUADRO N° 13

ESPECIFICACIONES TECNICAS DEL EQUIPO DE BOMBEO PARA POZO PROFUNDO

IMPRIMIR
MARCA: SHANGHAI

<table>
<thead>
<tr>
<th>CARACTERISTICAS</th>
<th>TIPOS DE BOMBAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODELO</td>
<td>250JC/K 130</td>
</tr>
<tr>
<td>CANTIDAD</td>
<td>Unidad</td>
</tr>
<tr>
<td>8X4</td>
<td>5</td>
</tr>
<tr>
<td>8X6</td>
<td>54</td>
</tr>
<tr>
<td>8X8</td>
<td>109</td>
</tr>
<tr>
<td>10.5X3</td>
<td>168</td>
</tr>
<tr>
<td>10.5X4</td>
<td>157</td>
</tr>
<tr>
<td>Nº DE ETAPAS</td>
<td>Impulsores</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>10.5X5</td>
<td>5</td>
</tr>
<tr>
<td>10.5X6</td>
<td>6</td>
</tr>
<tr>
<td>CARGA</td>
<td>m</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>48</td>
<td>42</td>
</tr>
<tr>
<td>64</td>
<td>42</td>
</tr>
<tr>
<td>32</td>
<td>52</td>
</tr>
<tr>
<td>CAUDAL</td>
<td>m3/h</td>
</tr>
<tr>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>130</td>
<td>210</td>
</tr>
<tr>
<td>130</td>
<td>210</td>
</tr>
<tr>
<td>130</td>
<td>210</td>
</tr>
<tr>
<td>LONGITUD TUBO DE COLUMNA</td>
<td>M</td>
</tr>
<tr>
<td>18,4</td>
<td>18,4</td>
</tr>
<tr>
<td>28,4</td>
<td>23,4</td>
</tr>
<tr>
<td>36</td>
<td>28,4</td>
</tr>
<tr>
<td>Nº TUBOS DE COLUMNA largos/corto</td>
<td>Unidad.</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>DIAMETRO INTERNO DEL TUBO</td>
<td>mm</td>
</tr>
<tr>
<td>194</td>
<td>194</td>
</tr>
<tr>
<td>194</td>
<td>219</td>
</tr>
<tr>
<td>194</td>
<td>219</td>
</tr>
<tr>
<td>VELOCIDAD GIRATORIA</td>
<td>RPM</td>
</tr>
<tr>
<td>1760</td>
<td>1760</td>
</tr>
<tr>
<td>1760</td>
<td>1760</td>
</tr>
<tr>
<td>1760</td>
<td>1760</td>
</tr>
<tr>
<td>1760</td>
<td>1760</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CARACTERISTICAS</th>
<th>MOTOR ELECTRICO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODELO</td>
<td>YLB180-1-4</td>
</tr>
<tr>
<td>POTENCIA</td>
<td>KW</td>
</tr>
<tr>
<td>18,5</td>
<td>30</td>
</tr>
<tr>
<td>TENSION - TRIFASICO</td>
<td>V</td>
</tr>
<tr>
<td>FRECUENCIA</td>
<td>Hz</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Nº DE POLOS</td>
<td>Nº</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>PESO NETO</td>
<td>Kg</td>
</tr>
<tr>
<td>1505</td>
<td>2112</td>
</tr>
</tbody>
</table>
6.0 CONCLUSIONES

- Los pozos que conforman el Programa de Rehabilitación, Electrificación y Equipamiento en el Valle Alto Piura, fueron evaluados en función a la cercanía de la red de distribución de la energía eléctrica existente, seleccionándose así 31 Pozos (30 Tubulares y 1 Mixtos) los mismos que se localizan en los sectores de riego: Malacasi 01, La Gallega 03, Pabur 10, Charanal 06, Yapatera 06, Vicus 4 y Sancor 01.

- Los pozos en su mayoría fueron perforados entre los años 1961-1970, a profundidades de 20 m (mixtos) a 40m los tubulares, con tubería de revestimiento de 15" a 18" de diámetro (Ø) y 1/4" de espesor, los niveles estáticos al momento de la evaluación fueron de 2.0 - 10 m y los caudales referenciales son de 30 - 70 l/s , los equipos de bombeo datan de los años 1980 – 1995, de los cuales 22 equipos se encuentran operativos, 8 equipos tienen los motores malogrados.

- La programación de las obras de rehabilitación y desarrollo a efectuarse en los pozos ha sido determinada en relación al estado actual de los mismos y su nivel de arenamiento. De tal manera se ha programado los trabajos de rehabilitación de 16 pozos y 15 solamente se efectuará la prueba de bombeo para, posteriormente, instalar el equipo de bombeo nuevo. Asimismo, se ha programado ejecutar las obras civiles siguientes: 03 bases de bomba con rieles tipo "H", o vigas de algarrobo labrados, 01 ante pozos con anillado de ladrillo, 04 pozas de disipación con tramos cortos de canal de salida

- El Presupuesto Base para la ejecución de las actividades programadas de Rehabilitación, Desarrollo y Obras civiles en pozos que los que requieren, asciende a la suma de: S/ 339 811. 31; que comprende los Costos Directos incluyendo en este el Flote y la Dirección Técnica, los Gastos Generales, la Utilidad y el IGV de 19%.

- La ejecución del proyecto, en un corto plazo, permitirá mejorar el riego de 700 Ha, reincorporar 704 Ha y obtener una segunda campaña de 293 Ha, que representa una superficie anual cultivada de 1700 Ha. De esta forma se piensa obtener, para el año de plena producción, un Valor Neto de: S/ 2 570 010.mediente el cual se generará empleo en el medio rural.

- El proyecto permitirá beneficiar directamente a 592 familias debidamente organizadas en Asociación de pequeños Agricultores, de acuerdo al área de influencia de riego de cada pozo, e indirectamente generará empleo en un promedio de 68 000 jornales por campaña agrícola.

- Los beneficiarios del proyecto al organizarse en Asociación de riego podrán contar con personería jurídica y tener opción a ser calificados, sujetos de crédito por las entidades financieras: públicas y/o privadas; pueden no solo mejorar la infraestructura de captación de las aguas subterráneas y asegurar el abastecimiento de agua con fines de riego, sino también disponer de otra opción organizativa con ventajas de escala para la adquisición de insumos o comercialización de sus productos.

- Los estudios hidrogeológicos realizados por el PE-AFATER, determinaron que las reservas anuales explotables del acuífero son del orden de: 199.6 millones de m³; considerando que el nivel de explotación actual es del orden de los 35.7 millones de m³ y que la demanda de agua del proyecto es de 25.4 millones de m³, aún extrayendo ésta demanda adicional, se estaría en situación de sub-expLOTACIÓN y lejos de alcanzar el nivel máximo de explotación del acuífero. Sin embargo, se estará aumentando la disponibilidad de agua para riego y...
del acuífero. Sin embargo, se estará aumentando la disponibilidad de agua para riego y contribuyendo significativamente al drenaje vertical en áreas con problemas por la presencia de la napa del freático muy superficial.

- Como consecuencia de los resultados del proyecto, los pequeños agricultores se verán incentivados y promovidos a continuar con el programa de electrificación y equipamiento de pozos como una alternativa de solución definitiva y permanente al abastecimiento de agua con fines de riego; disminuyendo el riesgo de pérdidas económicas ante una eventual escasez de agua superficial o persistente sequía en el régimen hidrológico plurianual.

- Con la integración a las Cadenas Productivas que promueve la Dirección Regional de Agricultura y otras, promovidas por ONGs, los directivos y socios que conforman los Comités de riego por pozo, se verán fortalecidos, con capacitación de manera tal que podrán planificar las labores agrícolas desde la siembra hasta la comercialización de los productos en el mercado.

- Los agricultores lograrán contar ingresos permanentes, durante los meses del año por la venta de los productos limón y plátano que reportan cosechas continuas, manteniendo así a los usuarios con una economía estable que les permitiría satisfacer las necesidades básicas de sus familias.

### 6.1 RECOMENDACIONES

- La ejecución del proyecto, debe empezar con el trabajo de rehabilitación desarrollo de los pozos, que permitirá determinar las características hidráulicas de su funcionamiento y el nivel de estabilización, de ser favorable los resultados, se procederá a ejecutar los trabajos de electrificación de los pozos y paralelamente, programar el transporte de los equipos de bombeo seleccionados (Lima – Chulucanas).

- Asimismo, previamente a los trabajos los beneficiarios deberán cumplir con los requisitos que demanda el Programa y de la entidad que se encargará de el otorgar el Préstamo por Cuenta Ajena para el "Equipamiento de Pozos".

- La sostenibilidad del proyecto se basa en su articulación con las cadenas productivas y el apoyo decidido en capacitación y asistencia técnica que brinden el Estado, los ONGs y de los programas de Fondos Rotatorios que otorgan, en algunos casos, los insumos necesarios para la producción de los cultivos propuestos.

- En el futuro debe considerarse la ejecución de un Programa de perforación de pozos, el cual deberá priorizar la reposición de pozos que superan los 30 años de servicio y que han sido considerados en el presente programa de electrificación; a fin que, en forma gradual, se renueven los pozos más antiguos.
7.0 ESPECIFICACIONES TÉCNICAS PARA REHABILITACIÓN DE POZOS Y OBRAS CIVILES

El Instituto Nacional de Recursos Naturales – INRENA, a través del Intendencia de Recursos Hídricos - IRH, y el Programa Nacional de Aprovechamiento de Agua Subterráneas-PRONASUB, vienen desarrollando acciones en el marco del plan Nacional de Relanzamiento Agrario; con el fin de contrarrestar en forma definitiva los efectos de la sequía en el Valle Alto Piura se ha propuesto elaborar el presente proyecto denominado “Programa de Rehabilitación, Electrificación y Equipamiento de Pozos”.

Las especificaciones técnicas que a continuación se detallan no tienen carácter limitativo y obedecen únicamente a las obras de Rehabilitación y desarrollo de pozos así como también a las obras civiles. Las especificaciones Técnicas de las obras de electrificación se encuentran en el Volumen II.

Con el fin de cumplir las metas propuestas las actividades que se han considerado ejecutar se señalan a continuación:

- Trabajos preliminares
- Rehabilitación y Desarrollo de los Pozos
- Prueba de rendimiento
- Montaje y Desmontaje de los Equipos
- Obras Civiles

7.1 TRabajos Preliminares

7.1.1 Alquiler de Almacén Guardianía –Almacenero

Esta partida comprenderá el alquiler de un local amplio y seguro en la ciudad de Chulucanas para acopiar los equipos de bombeo que serán transportados de la ciudad de Lima, la conformidad del local, estará dada por el representante del ATDR Alto Piura Ing. Residente y Supervisor Obra; asimismo, se a considerado los servicios de dos guardianes y un almacenero para el resguardo y control de la entrada y salida de los equipos de bombeo.

Método de Medición

Los pagos se efectuarán por mes.

Base de Pago

El pago de alquiler de almacén guardiania almacenero se ejecutará en forma mensual efectuándose a la partida arriba mencionada.

7.1.2 Acondicionamiento de Equipo de Bombeo

Esta actividad se ejecutará en el almacén del MINAG con personal técnico que deberá realizar el inventario del equipo de bombeo y sus componentes; asimismo, se realizará la revisión del estado de los equipos de bombeo, que por su tiempo de almacenaje será
conveniente constatar su estado de operación, separando, solamente, aquellos que se encuentran en buen estado y en condiciones óptimas para su transporte. La supervisión de este trabajo deberá estar a cargo de un Ing. Mecánico Electricista, quien aprobará el funcionamiento del equipo de bombeo.

7.1.3 Diagnostico de Pozos

Consistirá en evaluar los pozos en función a sus características técnicas iniciales y actuales debiéndose considerar las siguientes: año de perforación, diámetro de entubado, profundidad inicial y actual, caudal referencial, estado del equipo de bombeo existente (motor - bomba), disponibilidad de energía eléctrica, tipo de beneficiario, y área de riego.

Para realizar este trabajo, será necesario contar con el siguiente equipo de ingeniería: sondas de profundidad, sondas eléctricas, wincha, GPS, éste último permitirá localizar los pozos con relación al tendido de la red de energía eléctrica, y así determinar las distancias con fines de efectuar el presupuesto de electrificación.

Método de Medición

La unidad de medida será por pozo, en condiciones utilizables.

Base de Pago

La valorización se realizará de acuerdo al avance, afectándose a la partida de: “Diagnostico de pozos”.

7.2 REHABILITACIÓN DE POZOS

7.2.1 Acondicionamiento de Terreno

Esta actividad consistirá en eliminar las malezas, materiales extraños y la nivelación del terreno en un área de 100 m² circundante al pozo (10x10 m), a fin de contar con espacio libre para la instalación de la compresora y equipos a utilizarse en la rehabilitación del pozo; asimismo para colocar las tuberías de la bomba extraída del pozo.

Método de Medición

La unidad de medida será por m²

Base de Pago

La valorización se realizará de acuerdo al avance, afectándose a la partida: “Acondicionamiento de Terreno”.

[Signature]
Leonardo Fortunato Ayala Sánchez
Ingeniero Agrónomo
Reg. CIP N° 17847
7.2.2 Transporte de equipos de Rehabilitación y Pruebas de Bombeo

Descripción

Se procederá paralelamente a las distintas actividades desde el inicio de la obra, el ingreso de la maquinaria, equipos y herramientas, tomando las precauciones necesarias para garantizar la calidad y oportunidad de la maquinaria, equipos y herramientas, incluyendo personal técnico especializado, material y todo lo necesario para instalar e iniciar el proceso de rehabilitación de pozos tubulares en cada frente de trabajo. El Supervisor aprobará el equipo y maquinaria ingresada a la obra, pudiendo rechazar aquel que no se encuentre en condiciones satisfactorias para la labor a cumplir. El Contratista se responsabiliza por el traslado interno en obra de los mismos. Una vez concluidos los trabajos en un pozo y previa autorización del Supervisor, el Residente procederá a la desmovilización hacia otro pozo a rehabilitarse. Los equipos a transportarse son: compresora, equipo de prueba y equipo de prueba de verticalidad, contándose para ello con el alquiler de una movilidad de apoyo.

Método de medición

La unidad de medida es por pozo y se considera al traslado desde Chulucanas a los pozos programados.

Base de Pago

La valorización se realizara de acuerdo al avance, afectándose a la partida: "Transporte de equipos de limpieza y prueba de bombeo".

7.2.3 Desmontaje de Equipo de Bombeo Existente

Descripción

Se procederá a realizar el desmontaje de los equipos de bombeo actualmente instalados (cabezal de descarga, cabezal de engranaje, estabilizadores, ejes, fundas, cuerpo de bomba) con la finalidad de dejar el pozo en condiciones de ser rehabilitados y determinar las averías tanto en el cuerpo de la bomba como en la columna de impulsión, las misma que deberán ser colocadas sobre vigas, de madera para no afectar las partes de las roscas de la tubería y ejes. Todos los componentes que conforma el equipo de bombeo serán entregados a los usuarios con un listado para su resguardo.

Método de medición

La unidad de medida es el pozo y en el precio unitario incluye la mano de obra calificada y no calificada, movilidad, herramientas manuales, y el equipo de izaje requeridos.

Base de Pago

La valorización se aprobará de acuerdo al avance aprobado por el supervisor, afectándose a la partida: "Desmontaje de Equipo de Bombeo Existente".
7.2.4 Limpieza y Recuperación del Fondo

Recuperación de fondo en los Pozos

Descripción

El trabajo de limpieza y recuperación de fondo del pozo consiste en extraer los sedimentos o detritos y todo material extraño que haya ingresado al interior del pozo, como consecuencia de arrastre y/o desprendimiento de materiales del acuífero o por la escorrentía superficial o inundaciones. La finalidad es recuperar el fondo del pozo a los niveles iniciales de la perforación o dejarlo a una profundidad compatible con las condiciones hidráulicas de la explotación del pozo. Se realizará mediante la inyección de aire comprimido al interior del pozo por medio de una tubería de inyección de aire, formando una mezcla aire-agua que por diferencia de densidades, provoca un flujo turbulento hacia afuera del pozo desalojando, por arrastre, a través de una tubería de descarga los sedimentos y materiales extraños al pozo.

Para la ejecución de esta actividad se requiere un equipo compuesto por:

- Una máquina compresora de capacidad mínima de 9 m³ / min. y una presión de trabajo superior a 7 Kg / cm²
- Un equipo de inyección de aire comprimido compuesto por: tubería de inyección de aire de aire de ¾’a 2’ de diámetro, Tubería de educación o descarga entre 4” a 6” de diámetro, herramientas de izaje (trípode y winche), herramientas menores (llave cadena, charnela, estilíson, etc.)

Iniciada la operación las tuberías se irán descendiendo a medida que el agua es expulsada por la tubería de descarga y se aprecie libre de sólidos en suspensión, así como el nivel dinámico y la colocación de la tubería de educación debe permitir una sumergencia al inicio a .fin de ir incrementando la presión de trabajo del compresor, la cuál variará de 4 a 7 Kg / cm²; Continuándose así hasta llegar al fondo del pozo, en donde se mantendrá el inyectado cuando menos por una hora consecutiva. El supervisor verificará y aprobará la culminación del trabajo.

Método de medición

La unidad de medida es el pozo, el precio unitario incluye la mano de obra calificada y no calificada, insumos, equipos y herramientas manuales.

Base de pago

La valorización se efectuará al término del trabajo afectando a la partida: “Limpieza y rehabilitación del pozo”

7.2.5 Rehabilitación y desarrollo de pozos no Estables

Rehabilitación y desarrollo del pozo, no estables actividad se ejecutara en 11 pozos que presentan problemas de arenamientos continuos derrumbes en el área circulante al pozo para su estabilización se a programado disponer 6.0 m³ de grava menor a ¾’y 25 kg. el tiempo de compresora a emplearse será de 24 horas, considerándose su utilización en la recuperación de fondo y en el desarrollo del pozo
Esta actividad consiste en la remoción de los sedimentos, la arena fina y otros materiales de una zona inmediata alrededor de la rejilla del pozo, con lo cual se mejoran las condiciones de funcionamiento hidráulico en la formación acuífera, a través de la cual puede fluir el agua más libremente hacia el pozo. De tal manera de disminuir la perdida de carga al mejorar la resistencia de entrada del agua, desde el medio poroso, hacia el interior de la tubería filtro. Además esta actividad permite eliminar cualquier obstrucción o incrustación de sales en los filtros y clasifica el material en la formación acuífera inmediatamente alrededor de la rejilla, de tal manera que se logra una situación estable, en la cuál el pozo proporciona agua libre de arena a su máxima capacidad.

Mediante la aplicación del método de aire comprimido se realizará la agitación mecánica del pozo por medio de inyección de aire comprimido, para lo cuál se utilizará una compresora con las características señaladas. Por medio de mangueras de alta presión y conexiones de seguridad adecuadas el tanque regulador del compresor estará conectado a una o dos tuberías de 1" y/o 2" de Ø, respectivamente; las cuales se harán descender internamente por la tubería de descarga en posición de bombeo y la otra lateralmente entre la tubería de descarga y la columna filtrante del pozo en posición de desarrollo.

Se iniciará el desarrollo inyectando aire a presión desde el nivel superior del entubado filtrante, continuando el descenso en forma progresiva a través de la columna de filtrante hasta su nivel inferior.

Queda establecido que las presiones de trabajo estarán comprendidas entre 4 y 7 Kg. / cm² inyectándose en periodos de 10 a 15 minutos de duración, por 10 a 20 minutos de extracción del material producto del desarrollo. Asimismo, en cada nivel de trabajo se realizará la recirculación de agua, actividad que permitirá mejorar las condiciones de permeabilidad vertical.

La duración de esta actividad dependerá de las características constructivas del pozo y las formaciones acuíferas adyacentes al mismo, habiéndose estimado un lapso de una o dos horas de desarrollo por cada metro de columna productora.

**Método de Medición**

La unidad de medida es el pozo, el precio unitario incluye la mano de obra calificada y no calificada, insumos, equipos y herramientas manuales.

**Base de pago**

La valorización se efectuará al término del trabajo, afectando a la partida: "Rehabilitación y desarrollo del pozo".

**Aplicación de Aditivos Químicos**

**Descripción**

Con la agitación producida por la inyección de aire comprimido se adicionarán aditivos químicos defloculantes tales como Tripolífosfato de sodio para la limpieza interna de incrustaciones, óxidos y arcillas impregnadas en la columna del pozo y en la zona filtrante. Para este trabajo se utilizará dos inyectores de aire con presiones de 2 a 4 Kg. / cm², a fin de crear recirculación y agitación permanente e intensiva en el interior del pozo.

Se adicionará el aditivo químico en cantidades suficientes, se continuará con esta activación por un tiempo no menor de 2 horas. Se dejará de inyectar aire comprimido a fin de conseguir que la escoria y sedimentos se asienten en el fondo del pozo, para posteriormente proceder al desalojo de estos materiales, mediante bombeos de extracción por un lapso de 2 a 3 horas.
El aditivo químico trabajará eficientemente cuando se aplican en la proporción de 0.5 kg. de aditivo químico por cada 400 litros de agua del pozo. Debe permitirse que la mezcla repose unas horas antes de iniciar las operaciones de desarrollo.

**Método de medición**

La unidad de medida es el kg y el precio unitario incluye el suministro y aplicación del aditivo químico.

**Base de Pago**

La valorización se aprobará una vez concluidas las labores en cada frente de trabajo.

**Suministro y Colocación de Grava < 3/4"**

**Descripción**

Comprende el conjunto de operaciones que se tendrá que efectuar para colocar la cantidad necesaria y suficiente de grava en el espacio anular comprendido entre el tubo de revestimiento existente y la nueva funda, operación que se realizará por medio de palas manuales y en forma lenta mientras se redesarrolla el pozo. La grava debe ser redondeada, sin aristas, limpia, de diámetro uniforme seleccionada en cantera, de diámetro no mayor a un 3/4".

La colocación deberá ser efectuada a un ritmo tal que se tenga la seguridad, de que va descendiendo por el espacio anular sin formar puentes o obstrucciones que altere la continuidad del pre-filtro. Cada cierto tiempo se realizará una agitación suave con el equipo de inyección de aire para producir el acomodo de la misma dentro del espacio anular.

Queda estrictamente prohibida la colocación de grava angulosa o empleando cualquier herramienta mecánica o manual que arroje gran cantidad de grava por el espacio anular.

La colocación de grava deberá continuarse hasta colmar completamente el espacio anular, enrasándolo a la superficie del terreno y alrededor de la tubería de revestimiento del pozo.

**Método de medición**

La unidad de medida es global y comprende el suministro y colocación de la grava, equipo de inyección de aire, herramientas y mano de obra calificada y no calificada.

**Base de pago**

Esta partida se valorizará una vez concluida esta actividad.

**7.2.6 Pruebas de Bombeo a Caudal Variable**

**Descripción**

Una vez concluidas las actividades de limpieza y/o rehabilitación del pozo se realizará la prueba de bombeo a caudal variable, con la finalidad de determinar el caudal de explotación del pozo.
La prueba de bombeo deberá cumplir las siguientes especificaciones:

- Se realizará en varios regímenes de bombeo (mínimo tres), de acuerdo a las características Hidráulicas del pozo a lo largo de los cuales se llevará un control con equipo de campo de los parámetros siguientes: caudal, nivel dinámico, conductividad eléctrica, temperatura, Ph.
- En la culminación de cada régimen se cuantificará el caudal bombeado y el nivel dinámico correspondiente debidamente estabilizado.
- Se llevará un registro de la turbidez del agua, cuantificando el tiempo en que se presenta desde el inicio del régimen hasta cuando se bombee agua clara, sin contenido de sólidos en suspensión de los cuales, de ser posible, se llevará un registro.
- El equipo de pruebas de bombeo deberá ser de capacidad suficiente como para superar el caudal crítico del pozo.
- Se tomarán muestras de agua representativos al final de cada régimen de bombeo, para su posterior análisis físico-químico.
- La interpretación de la prueba determinará el caudal de explotación recomendable y el nivel dinámico correspondiente a dicho caudal, para fines de equipamiento.
- La duración promedio de cada prueba de bombeo será de 24 horas continuas y con caudales y niveles dinámicos estabilizados en forma ascendente. El aumento de caudal se efectuará solo cuando se obtenga la estabilización del nivel dinámico.
- Podrá efectuarse pruebas de bombeo escalonadas en intervalos de tiempo iguales y según la metodología definida para éstas.

El Residente dispondrá en cada frente de trabajo de los equipos, maquinaria, y personal calificado, tanto en campo como en gabinete, responsable del llenado de los reportes de la prueba y de recabar los reportes del laboratorio con los resultados de los análisis físico-químicos del agua.

Finalmente, el Residente al término de la prueba entregará el registro de la prueba de bombeo, la curva de rendimiento del pozo y los resultados de los análisis físico-químicos de las muestras de agua.

Método de Medición

La unidad de medida es la hora y se valorizará una vez concluida la prueba.

Base de Pago

La valorización se realizará una vez concluida la prueba de bombeo.

7.2.7 INSTALACIÓN DE EQUIPOS DE BOMBEO EXISTENTES O DEFINITIVOS

Descripción General

Una vez rehabilitado el pozo y realizada la prueba de bombeo, se procederá a instalar el equipo de bombeo existente en caso que los trabajos de electrificación impliquen el sufrir demoras que puedan afectar el riego de los cultivos instalados. En caso contrario donde los trabajos de electrificación se pueda ejecutar en un tiempo menor de los 15 días y los cultivos no requieran de agua se procederá a instalar el equipo de bombeo definitivo.
7.2.8 Análisis Físico - Químico Muestras de Agua

En el proceso de la prueba de bombeo se tomarán muestras de agua que serán envasadas en recipientes de vidrio o plástico debidamente limpios, para su traslado a los laboratorios oficiales, donde realizarán los análisis físicos químicos completos y su clasificación por su aptitud para el riego. Para efecto del proyecto se ha considerado realizar el análisis de agua de los 31 pozos programados.

Se tomarán 31 muestras de agua y se realizarán los análisis correspondientes en Laboratorios Oficiales.

Método de Medición

La unidad de medida es la Muestra de Agua y se valorizará una vez obtenido los resultados del Laboratorio.

Base de Pago

La valorización se efectuará de acuerdo al avance, afectándose a la partida; "Análisis Físico - Químico de Muestras de Agua"

7.3 ESPECIFICACIONES TECNICAS DE LAS OBRAS CIVILES

Esta actividad se ha considerado en pozos que presentan bases de bomba destruidas por efecto de hundimiento del terreno en el área circundante al pozo, los trabajos a realizarse serán los siguientes:

7.3.1 Construcción de Bases de Bombas

Descripción

Para la construcción de las bases de los equipos de bombeo se han considerado emplear concreto ciclópeo Concreto $F'c= 175$ kg/cm² + 30% de PM. Las dimensiones de las bases serán dos dados de 1.0 m x 1.0 m x 1.0 m, incluido las sobre bases de 1.0 m x 1.0 m x 0.20 m donde se empotrarán 2 rieles de acero de 5.0 a 4.0 m de longitud x 0.15m x 0.15 m.

Para tal efecto se han considerado las siguientes partidas:

Concreto $F'c = 175$ Kg/cm² + 30 % de P. M.
Concreto $F'c = 175$ Kg/cm²
Concreto $F'c = 140$ Kg/cm²

Se construirán de acuerdo a los planos respectivos.
Cimentación de Ante Pozo.

El concreto se vaciará en el anillo circular de 0.30 m de ancho x 0.30 m de profundidad, a partir del cual se procederá a construir el rol de ladrillo de cabeza hasta llegar a la altura de deseada Concreto F’c= 175 kg/cm².

Tipo de mezclas que se utilizará para la construcción de las base de bomba, cimentación del ante pozo, construcción de poza de disipación y losa de canal respectivamente de acuerdo a las dimensiones establecidas en el diseño y planilla de metrado.

Comprende el suministro de mano de obra, materiales, equipo, herramientas y los controles necesarios para la fabricación y colocación de la mezcla.

El concreto para ser aceptado debe cumplir los requisitos de diseño de mezcla, de acuerdo a las características de sus componentes y lo especificado en relación a su resistencia, durabilidad, densidad, impermeabilidad y manejabilidad.

El concreto se compondrá de cemento, arena, agregado grueso; bien mezclados y con la consistencia adecuada.

Método de Medición

La unidad de medida es base de bomba construida y se valorizará una vez construida y aprobada por el Supervisor.

Base de Pago

La valorización se efectuará de acuerdo al avance, afectándose a la partida Construcción de Bases de Bomba.

7.3.2 Construcción de Ante Pozo

Descripción

Comprenderá la construcción de un anillo de ladrillo de alrededor del pozo de forma circular con las dimensiones siguientes: H= 1.70 m x Ø 1.30 m que tendrá como finalidad el de almacenar la grava de diámetro promedio menor a %", para su suministro ante el posible descenso durante la operación del pozo. Para su ejecución se realizarán las actividades de adquisición de ladrillo su asentamiento y otras acciones de acuerdo al plano correspondientes.

7.3.3 Construcción de Pozo de Disipación

Para evitar la erosión o inundación en el área circundante al pozo por efectos de la caída de agua; se ha programado la construcción de dos pozas de disipación con empleo de concreto Fc=175 Kg / cm² de las dimensiones siguientes L = 1.50 m, A = 1.00 m, H = 1.00 m, e = 0.15 m esta obra se ejecutará en conformidad al plano correspondiente.
7.3.4 Construcción de Tramo de Canal

Los tramos cortos de canal serán complementos de las pozas de disipación que permitirán evacuar el agua fuera del radio del pozo, entregando al canal de tierra estabilizado. Las dimensiones de canal serán: L= 30m, A= 0.40m, H= 0.30m, su sección será de tipo rectangular con muros de ladrillo de cabeza.

7.4 FLETE

7.4.1 Materiales de Construcción

Comprenderá el traslado de los materiales de construcción, como son: cemento, agregados, madera, rieles, del lugar de adquisición a la obra donde la cantidad, calidad y oportunidad será verificado y aprobado por el Residente de obra.

7.4.2 Transporte del Equipo de Bombeo de Lima a Chulucanas

Una vez seleccionados los equipos de bombeo compuesto por el cuerpo de bomba, eje, columnas de tuberías de impulsión, acoples, cabezal de descarga, motor eléctrico vertical y demás accesorios; serán debidamente embalados y con el apoyo de un montacargas se procederá a cargar al vehículo que transportará el equipo al lugar solicitado. El mismo que irá acompañado por una Guía de Remisión y del Pedido Comprobante de Salida (PECOSA); otorgado por la Comisión Especial de Ventas de Maquinarias del MINAG.

7.4.3 Transporte Local del Almacén de Chulucanas a los Pozos

Se efectuará una vez realizado los trabajos de rehabilitación, pruebas de bombeo y selección del equipo, se procederá a su entrega; previo inventario, documento que será firmado por el Almacenero del programa, el beneficiario y el ATDR. Posteriormente procederán al carguío y transporte al lugar del pozo, para ser instalado por los técnicos contratados.

Método de Medición

La unidad de medida es el Equipo de bombeo, recepcionado de acuerdo a la Guía de Remisión, el mismo que será verificado por el Supervisor.

Base de Pago

La valorización se efectuará de acuerdo a la cantidad de equipos recepcionados y entregados afectándose a la partida: “Flete”.

7.5 DIRECCIÓN TÉCNICA

Para dar cumplimiento a las metas del proyecto en el plazo previsto se contará con los servicios de dos Ingenieros Residentes y dos Asistentes de Obra quienes tendrán la responsabilidad de conducir el personal de campo, efectuar los requerimientos de compra.
llevar el avance de metrado y presentar los informes valorizaciones mensuales y otros documentos inherentes al cargo

Método de Medición

La unidad de medida es el Mes,

Base de Pago

La valorización se efectuará de acuerdo al avance mensual, afectándose a la partida de Dirección Técnica.

7.6 ESTUDIO DE FACTIBILIDAD TÉCNICO-ECONÓMICO Y LEGAL

Debido a que la adjudicación del equipo de bombeo será en calidad de venta directa a los productores agrarios, en condiciones excepcionales de financiamiento, se hace necesario preparar un estudio técnico, económico y financiero de la inversión, que acompañado de la documentación legal será el sustento para el préstamo ante el Comité Regional de Crédito, de la Comisión Especial de Ventas de Maquinaria del MINAG, que en virtud a lo dispuesto en la Resolución Vice-Ministerial Nº 002-2004- AG está conformado por dos representantes del MINAG y uno del Agro Banco.
ANEXO I

- RELACION DE POZOS ACTIVIDADES A EJECUTARSE PUNTOS DE ALIMENTACION DE ENERGIA ELECTRICA
  SELECCION DE EQUIPOS DE BOMBEO PROYECTADO POR SECTOR DE RIEGO

- PRESUPUESTO BASE DE REHABILITACION Y DESARROLLO DE POZO POR SECTORES DE RIEGO

- REQUERIMIENTO DE INSUMOS REHABILITACION DE POZOS Y OBRAS CIVILES POR POZO Y SECTORES DE RIEGO

- PLANILLA METRADO – OBRAS CIVILES
### PROYECTO DE RAHABILITACION, ELECTRIFICACIÓN Y EQUIPAMIENTO DE POZOS II ETAPA - VALLE ALTO PIURA

RELACIÓN DE POZOS, ACTIVIDADES A EJECUTARSE, POSIBLES PUNTOS DE ALIMENTACIÓN DE ENERGÍA ELECTRICA

SELECCIÓN DE EQUIPOS DE BOMBEO PROYECTADO POR SECTORES DE RIEGOS

#### SECTOR DE RIEGO: MALACAS - SALTITAL

<table>
<thead>
<tr>
<th>No. de poz.</th>
<th>IRHS</th>
<th>Nombre del Comité</th>
<th>Profundidad Acuífero</th>
<th>Bomba Actual</th>
<th>TRABAJO A EJECUTARSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>162</td>
<td>C R Tarantoño</td>
<td>20 15 15&quot; 6</td>
<td>X X</td>
<td>250 J C K 130-8x6</td>
</tr>
</tbody>
</table>

**TOTAL**: 1 1

#### SECTOR DE RIEGO: LA GALLEGA - MORROPON

<table>
<thead>
<tr>
<th>No. de poz.</th>
<th>IRHS</th>
<th>Nombre del Comité</th>
<th>Profundidad Acuífero</th>
<th>Bomba Actual</th>
<th>TRABAJO A EJECUTARSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>015</td>
<td>Comité de Agua. Poc. El Salvador</td>
<td>28 25 15&quot; 6 40</td>
<td>X X</td>
<td>250 J C K 130-8x6</td>
</tr>
<tr>
<td>03</td>
<td>019</td>
<td>Pozo &quot;El Osobo&quot;</td>
<td>30 28 12&quot; 4</td>
<td>X X</td>
<td>250 J C K 130-8x6</td>
</tr>
<tr>
<td>04</td>
<td>038</td>
<td>Pozo &quot;El Tor&quot;</td>
<td>30 28 15&quot; 2</td>
<td>X X</td>
<td>250 J C K 130-8x6</td>
</tr>
</tbody>
</table>

**TOTAL**: 2 1 1 3 3

#### SECTOR DE RIEGO: PABUR - LA MATANZA

<table>
<thead>
<tr>
<th>No. de poz.</th>
<th>IRHS</th>
<th>Nombre del Comité</th>
<th>Profundidad Acuífero</th>
<th>Bomba Actual</th>
<th>TRABAJO A EJECUTARSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td>09</td>
<td>Comité Santa Angélica</td>
<td>35 30 18&quot; 5</td>
<td>X X</td>
<td>250 J C K 130-8x6</td>
</tr>
<tr>
<td>06</td>
<td>036</td>
<td>Comité Agricultores Mica</td>
<td>33 24 16&quot; 4</td>
<td>X X</td>
<td>250 J C K 130-8x6</td>
</tr>
<tr>
<td>07</td>
<td>066</td>
<td>Fundo San Vicente</td>
<td>42 42 18&quot; 5</td>
<td>X X</td>
<td>250 J C K 130-8x6</td>
</tr>
<tr>
<td>08</td>
<td>121</td>
<td>EISPON SAC - Emilio Hildebrand Guzmán</td>
<td>40 36 18&quot; 7</td>
<td>- - -</td>
<td>250 J C K 130-8x6</td>
</tr>
<tr>
<td>09</td>
<td>145</td>
<td>EISPON SAC - Emilio Hildebrand Guzmán</td>
<td>35 29 10&quot; 6</td>
<td>- - -</td>
<td>250 J C K 130-8x6</td>
</tr>
<tr>
<td>10</td>
<td>123</td>
<td>Santa Toma Grande A</td>
<td>40 35 18&quot; 4 60</td>
<td>X X</td>
<td>250 J C K 130-8x6</td>
</tr>
<tr>
<td>11</td>
<td>143</td>
<td>C R Los Caraqueños</td>
<td>40 38 18&quot; 4</td>
<td>X X</td>
<td>250 J C K 130-8x6</td>
</tr>
<tr>
<td>12</td>
<td>087</td>
<td>Miguel Valdez Ruiz</td>
<td>32 30 15&quot; 5</td>
<td>X X</td>
<td>250 J C K 130-8x6</td>
</tr>
<tr>
<td>13</td>
<td>086</td>
<td>David Ravonov León</td>
<td>42 36 15&quot; 4</td>
<td>X X</td>
<td>250 J C K 130-8x6</td>
</tr>
<tr>
<td>14</td>
<td>011</td>
<td>Asoc Caño de Ayabaca</td>
<td>35 34 15&quot; 3</td>
<td>X X</td>
<td>250 J C K 130-8x6</td>
</tr>
<tr>
<td>15</td>
<td>061</td>
<td>C R Sanzo</td>
<td>35 30 18&quot; 3</td>
<td>X X</td>
<td>250 J C K 130-8x6</td>
</tr>
</tbody>
</table>

**TOTAL**: 4 1 1 1 10 11

* IRHS 121 - 2° Etapa reemplazará el IRHS 149 de la 1° Etapa
### PROYECTO DE RAHABILITACION, ELECTRIFICACION Y EQUIPAMIENTO DE POZOS II ETAPA - VALLE ALTO PIURA

#### RELACIÓN DE POZOS, ACTIVIDADES A EJECUTARSE, POSIBLES PUNTOS DE ALIMENTACIÓN DE ENERGÍA ELECTRICA

#### SELECCIÓN DE EQUIPOS DE BOMBEO PROYECTADO POR SECTORES DE RIEGOS

#### SECTOR DE RIEGO: CHARANAL - CHULUCANAS

<table>
<thead>
<tr>
<th>No. de Etapa</th>
<th>RIUS</th>
<th>Nombre del Comité</th>
<th>Año de Proyección</th>
<th>Profundidad (m)</th>
<th>Bomba Actual</th>
<th>TRABAJO A EJECUTARSE</th>
<th>Selección Preliminar del Equipo</th>
<th>Coordenadas del Pozo</th>
<th>BÉREDOCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 027</td>
<td>1964</td>
<td>Comité el Amanecer</td>
<td>35 32 15° 5</td>
<td>50 Perkins</td>
<td>X</td>
<td>250/C/K 130-8x6</td>
<td>30 48</td>
<td>05998193 9430256  1119</td>
<td>131066149 0599114  9431059  17 30</td>
</tr>
<tr>
<td>17 025</td>
<td>1964</td>
<td>Comité de Riego Calle</td>
<td>35 30 19° 5</td>
<td>40 Perkins 60 HP</td>
<td>X</td>
<td>250/C/K 130-8x6</td>
<td>30 48</td>
<td>0598614 9430992  1289</td>
<td>131066149 0599114  9431059  10 45</td>
</tr>
<tr>
<td>18 024</td>
<td>1960</td>
<td>Comité de Riego Calle</td>
<td>40 35 18° 5</td>
<td>45 China - 120 HP</td>
<td>X</td>
<td>250/C/K 130-8x6</td>
<td>30 48</td>
<td>0598625 9430226  125</td>
<td>131066149 0599114  9431059  9 40</td>
</tr>
<tr>
<td>20 304</td>
<td>1965</td>
<td>Antonio Medina Gonzales y Carmen R. Seminario Pella</td>
<td>20 16 15° 3</td>
<td>30 China - 88 HP</td>
<td>X</td>
<td>250/C/K 130-8x6</td>
<td>30 48</td>
<td>0598483 94303936  1688</td>
<td>131066149 0597347  9333114  2 20</td>
</tr>
<tr>
<td>21 879</td>
<td>1965</td>
<td>German Carreño Alvado</td>
<td>25 23 16° 6</td>
<td>22 Russian-23 5 HP</td>
<td>X</td>
<td>250/C/K 130-8x6</td>
<td>18.5 37 0601492 9434467 1260</td>
<td>92A 0601329 9433270  1 50</td>
<td></td>
</tr>
</tbody>
</table>

**TOTAL**: 2 1 1 1 6 6

#### SECTOR DE RIEGO: YAPATERA

<table>
<thead>
<tr>
<th>No. de Etapa</th>
<th>RIUS</th>
<th>Nombre del Comité</th>
<th>Año de Proyección</th>
<th>Profundidad (m)</th>
<th>Bomba Actual</th>
<th>TRABAJO A EJECUTARSE</th>
<th>Selección Preliminar del Equipo</th>
<th>Coordenadas del Pozo</th>
<th>BÉREDOCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 334</td>
<td>1960</td>
<td>Comité Campo Herrera</td>
<td>35 32 18° 3</td>
<td>30 China - 45 HP</td>
<td>Chino 8°</td>
<td>250/C/K 130-8x6</td>
<td>30 48</td>
<td>0592024 9440769 1077</td>
<td>92 0592053 9441543 20 40</td>
</tr>
<tr>
<td>23 370</td>
<td>1981</td>
<td>Pozo Salis - Gualman Chico</td>
<td>30 28 18° 6</td>
<td>40 Perkins - 35 HP</td>
<td>Americaana</td>
<td>250/C/K 130-8x6</td>
<td>30 48</td>
<td>0590317 9440739 1890</td>
<td>92 0592053 9441543 1 60</td>
</tr>
<tr>
<td>24 4466</td>
<td>1962</td>
<td>Pozo Aguadeal</td>
<td>30 28 18° 7</td>
<td>40 China - 45 HP</td>
<td>Chino 8°</td>
<td>250/C/K 130-8x6</td>
<td>30 48</td>
<td>0599666 9430367 1780</td>
<td>133 059497 9430859 15 40</td>
</tr>
<tr>
<td>25 821</td>
<td>1960</td>
<td>Comité MAMACITA y ARENA</td>
<td>27 25 18° 3</td>
<td>45 China</td>
<td>Chino 8°</td>
<td>250/C/K 130-8x6</td>
<td>30 48</td>
<td>0594039 9438301 1813</td>
<td>RST 099 0593678 9435060 40 60</td>
</tr>
<tr>
<td>26 684</td>
<td>1968</td>
<td>Comité LAZO</td>
<td>40 36 18° 7</td>
<td>60 Volvo - 90 HP</td>
<td>Americaana 10°</td>
<td>250/C/K 310 - 10.5x8</td>
<td>30 32</td>
<td>0590224 9434111 2243</td>
<td>409294 0592102 9437194 51 41</td>
</tr>
<tr>
<td>27 671</td>
<td>1965</td>
<td>Señor Cazero (Vaqueria)</td>
<td>35 27 15° 8</td>
<td>25 -</td>
<td>X</td>
<td>250/C/K 130-8x6</td>
<td>30 48</td>
<td>0592024 9433839 897</td>
<td>130052417 0593732 9437682 15 33</td>
</tr>
</tbody>
</table>

**TOTAL**: 5 1 1 1 6 6

---

445° se ve a tomar del pozo El Checo Fenix de la 1° Etapa y remplazará el RIUS 378 Juan Velascos Alvado de la 1° Etapa
ANEXO N° 01

**Cuadro N° 1**

**PROYECTO DE RAHABILITACION, ELECTRIFICACION Y EQUIPAMIENTO DE POZOS II ETAPA - VALLE ALTO PIURA**

**RELACIÓN DE POZOS, ACTIVIDADES A EJECUTARSE, POSIBLES PUNTOS DE ALIMENTACIÓN DE ENERGIA ELECTRICA**

**SELECCIÓN DE EQUIPOS DE BOMBEO PROYECTADO POR SECTORES DE RIEGOS**

### SECTOR DE RIEGO: VICUS - CHULUCANAS

<table>
<thead>
<tr>
<th>Identificación</th>
<th>Nombre del Caudal</th>
<th>Área del Proyecto</th>
<th>Profundidad</th>
<th>Típica</th>
<th>Actual</th>
<th>Bomba Actual</th>
<th>Trabajo a Ejecutarse</th>
<th>Selección Preliminar del Equipo</th>
<th>Coordenadas del Pozo</th>
<th>Beneficios</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>Asoc. de Cord Directos &quot;Tres Marias&quot;</td>
<td>1960</td>
<td>T 40 35 18° 4</td>
<td>70 Motor Perkins</td>
<td>X</td>
<td>X</td>
<td>300JC/S 210 - 10 5x3</td>
<td>30 32 0595049 9430596 1160</td>
<td>323A 0154284 9429147</td>
<td>22 48</td>
</tr>
<tr>
<td>29</td>
<td>Cesar Huertas - Fundo Villa Jerusalem</td>
<td>1997</td>
<td>T 35 35 5</td>
<td>40 Motor Perkins</td>
<td>Americana - B°</td>
<td>X</td>
<td>X</td>
<td>250JC/K 130-8x6</td>
<td>30 48 0587533 9436031 1372</td>
<td>32 0558889 9435884</td>
</tr>
<tr>
<td>30</td>
<td>C. Virgen de las Mercedes</td>
<td>1985</td>
<td>T 43 40 15° 7</td>
<td>50 China 100</td>
<td>China 10°</td>
<td>X</td>
<td>X</td>
<td>250JC/K 150-8x6</td>
<td>30 48 0588177 943986 905</td>
<td>23 0558981 9434041</td>
</tr>
<tr>
<td>31</td>
<td>Agrosol el Milagro - Carlos León Trelles</td>
<td>1965</td>
<td>T 60 48 15° 3</td>
<td>54 Motor Perkins</td>
<td>Boston</td>
<td>X</td>
<td>X</td>
<td>250JC/K 150-8x6</td>
<td>30 48 0585772 9437169 315</td>
<td>16 B 0558418 9435894</td>
</tr>
</tbody>
</table>

**TOTAL**

IRIS 031 POSTE 323A actualmente tiene dos líneas monofásicas, agregar otra línea para que sea tendido trifásico

### SECTOR DE RIEGO: SANCOR - CHULUCANAS

<table>
<thead>
<tr>
<th>Identificación</th>
<th>Nombre del Caudal</th>
<th>Área del Proyecto</th>
<th>Profundidad</th>
<th>Típica</th>
<th>Actual</th>
<th>Bomba Actual</th>
<th>Trabajo a Ejecutarse</th>
<th>Selección Preliminar del Equipo</th>
<th>Coordenadas del Pozo</th>
<th>Beneficios</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 564</td>
<td>La Tercera Paccha</td>
<td>1991</td>
<td>T 50 40 15° 6</td>
<td>40 China 130</td>
<td>China 130</td>
<td>X</td>
<td>X</td>
<td>250JC/K 130-8x8</td>
<td>30 48 0584805 9447195 1336</td>
<td>6 0586206 9440949</td>
</tr>
</tbody>
</table>

**TOTAL**

* N.E Y CAUDAL = ESTIMADO*
ANEXO N° 1

CUADRO N° 2

PRESUPUESTO BASE

REHABILITACIÓN Y DESARROLLO DE POZO

COMISION DE REGANTES: MALACASI  POZO  TAMARINDO IRHS 162

<table>
<thead>
<tr>
<th>ITEM</th>
<th>PARTIDA</th>
<th>UNIDAD</th>
<th>CANT.</th>
<th>COSTOS S/.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UNITARIO</td>
</tr>
<tr>
<td>1.0</td>
<td>OBRAS DE LIMPIEZA DE POZO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Acondicionamiento de terreno</td>
<td>m²</td>
<td>100</td>
<td>0,40</td>
</tr>
<tr>
<td>1.2</td>
<td>Transporte de Equipo de limpieza</td>
<td>Pozo</td>
<td>1</td>
<td>250,00</td>
</tr>
<tr>
<td>1.3</td>
<td>Desmontaje - Bombeo Exstente</td>
<td>Pozo</td>
<td>1</td>
<td>334,60</td>
</tr>
<tr>
<td>1.4</td>
<td>Limpieza y Recuperación de fondo</td>
<td>Pozo</td>
<td>1</td>
<td>1.395,00</td>
</tr>
<tr>
<td>1.5</td>
<td>Desarrollo de Pozo</td>
<td>Pozo</td>
<td>1</td>
<td>1.672,00</td>
</tr>
<tr>
<td>1.6</td>
<td>Transporte - Equipo - Prueba de bombeo</td>
<td>Equipo</td>
<td>1</td>
<td>282,00</td>
</tr>
<tr>
<td>1.7</td>
<td>Prueba de Bombeo</td>
<td>Pozo</td>
<td>1</td>
<td>1.057,10</td>
</tr>
<tr>
<td>1.8</td>
<td>Inst de Equipo - Bombeo existente o Definitivo</td>
<td>Equipo</td>
<td>1</td>
<td>383,20</td>
</tr>
<tr>
<td>1.9</td>
<td>Muestra - Agua Analisis Físico Químico</td>
<td>Muestra</td>
<td>1</td>
<td>100,00</td>
</tr>
</tbody>
</table>

TOTAL  | 5.513,90 |

OBRAS CIVILES

POZO IRHS N° 162 TAMARINDO

<table>
<thead>
<tr>
<th>ITEM</th>
<th>PARTIDA</th>
<th>UNIDAD</th>
<th>CANT.</th>
<th>COSTOS S/.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UNITARIO</td>
</tr>
<tr>
<td>1.0</td>
<td>CONSTRUCCION DE BASE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
</tr>
<tr>
<td>1.2</td>
<td>Excavación</td>
<td>m3</td>
<td>1,6</td>
<td>14,80</td>
</tr>
<tr>
<td>1.3</td>
<td>Concreto Fc= 175 kg/cm2+30%PM.</td>
<td>m3</td>
<td>2,0</td>
<td>222,29</td>
</tr>
<tr>
<td>1.4</td>
<td>Encofrado Desencofrado</td>
<td>m2</td>
<td>2,4</td>
<td>26,53</td>
</tr>
<tr>
<td>1.5</td>
<td>Rieles de Apoyo (2) - 3m x 0.20 m x 0.10 m</td>
<td>m</td>
<td>6,0</td>
<td>50,00</td>
</tr>
</tbody>
</table>

COSTO DIRECTO  | 831,93 |

LEONCIO PORTUNATO AVILES SANCHEZ
Ing. Agrónomo
Reg. CIP N° 17847
### ANEXO N°1
### CUADRO N°2

**PRESUPUESTO BASE**

**REHABILITACIÓN Y DESARROLLO DE POZOS**

**COMISION DE REGANTES: LA GALLEG - MORROPON**

<table>
<thead>
<tr>
<th>ITEM</th>
<th>PARTIDA</th>
<th>UNIDAD</th>
<th>CANT.</th>
<th>COSTOS SL.</th>
<th>POZOS - IRHS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UNIDAD</td>
<td>TOTAL</td>
</tr>
<tr>
<td>1.0</td>
<td>OBRAS DE LIMPIEZA DE POZO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Azcondicionamiento de terreno</td>
<td>m³</td>
<td>300</td>
<td>0,40</td>
<td>120,00</td>
</tr>
<tr>
<td>1.2</td>
<td>Transporte de equipo de limpieza</td>
<td>Pozo</td>
<td>2</td>
<td>250,00</td>
<td>500,00</td>
</tr>
<tr>
<td>1.3</td>
<td>Desmontaje - Equipo - Bombeo Existente</td>
<td>Pozo</td>
<td>3</td>
<td>334,60</td>
<td>1,003,80</td>
</tr>
<tr>
<td>1.4</td>
<td>Limpieza y Recuperación de fondo</td>
<td>Pozo</td>
<td>2</td>
<td>1,395,00</td>
<td>2,790,00</td>
</tr>
<tr>
<td>1.5</td>
<td>Desarrollo de Pozo</td>
<td>Pozo</td>
<td>2</td>
<td>1,672,00</td>
<td>3,344,00</td>
</tr>
<tr>
<td>1.6</td>
<td>Rehabilitación del Pozo</td>
<td>Pozo</td>
<td>2</td>
<td>1,672,00</td>
<td>3,344,00</td>
</tr>
<tr>
<td>1.7</td>
<td>Desarrollo del Pozo</td>
<td>Pozo</td>
<td>2</td>
<td>1,672,00</td>
<td>3,344,00</td>
</tr>
<tr>
<td>1.8</td>
<td>Transporte - Equipo - Prueba de bombeo</td>
<td>Equipo</td>
<td>3</td>
<td>282,00</td>
<td>846,00</td>
</tr>
<tr>
<td>1.9</td>
<td>Prueba de Bombeo</td>
<td>Pozo</td>
<td>3</td>
<td>1,057,10</td>
<td>3,171,30</td>
</tr>
<tr>
<td>1.10</td>
<td>Inst de Equipo - bombeo existente o Definitivo</td>
<td>Equipo</td>
<td>3</td>
<td>383,20</td>
<td>1,149,60</td>
</tr>
<tr>
<td>1.11</td>
<td>Muestra - Agua Analisis Físico Quimico</td>
<td>Muestra</td>
<td>3</td>
<td>100,00</td>
<td>300,00</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>13,224,70</td>
<td>2,196,50</td>
</tr>
</tbody>
</table>

**OBRAS CIVILES**

**POZO EL TITE | IRHS 38- LA GALLEG**

<table>
<thead>
<tr>
<th>ITEM</th>
<th>PARTIDA</th>
<th>UNIDAD</th>
<th>CANT.</th>
<th>COSTOS SL.</th>
<th>PARCIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>POZA DE DISIPACION</td>
<td></td>
<td></td>
<td>1272,84</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Excavación</td>
<td>m³</td>
<td>0,45</td>
<td>14,80</td>
<td>6,66</td>
</tr>
<tr>
<td>1.2</td>
<td>Concreto F'c = 175 kg x cm²</td>
<td>m³</td>
<td>1,41</td>
<td>244,72</td>
<td>345,08</td>
</tr>
<tr>
<td>1.3</td>
<td>Acero</td>
<td>kg</td>
<td>68,05</td>
<td>3,68</td>
<td>250,42</td>
</tr>
<tr>
<td>1.4</td>
<td>Encofrado y desencofrado</td>
<td>m2</td>
<td>14</td>
<td>26,53</td>
<td>371,42</td>
</tr>
<tr>
<td>1.5</td>
<td>Terrajeo mortero 1:5</td>
<td>m2</td>
<td>14</td>
<td>21,32</td>
<td>298,48</td>
</tr>
<tr>
<td>2.0</td>
<td>CONSTRUCCION DE CANAL 90 M</td>
<td></td>
<td></td>
<td>1528,87</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Reflejo</td>
<td>m3</td>
<td>9</td>
<td>14,80</td>
<td>133,20</td>
</tr>
<tr>
<td>2.2</td>
<td>Concreto F'c = 140 kg x cm²</td>
<td>m3</td>
<td>2,1</td>
<td>224,72</td>
<td>471,91</td>
</tr>
<tr>
<td>2.3</td>
<td>Albañileria de Ladrillo de Soga</td>
<td>m2</td>
<td>18</td>
<td>30</td>
<td>540,00</td>
</tr>
<tr>
<td>2.4</td>
<td>Terrajeo mortero 1:5</td>
<td>m2</td>
<td>18</td>
<td>21,32</td>
<td>383,20</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>2800,91</td>
<td></td>
</tr>
</tbody>
</table>

---

**Señor Fortunato Ayala Sánchez**

*Ing. Agrónomo*

*Reg. CIP No. 17847*
## CUADRO N° 2

### COMISION DE REGANTES: PABUR • LA MATANZA

### REHABILITACIÓN Y DESARROLLO DE POZOS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>PARTICIPACIÓN</th>
<th>UNIDAD</th>
<th>CANT.</th>
<th>COSTOS S/.</th>
<th>P O Z O S - IRHS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
<td>09</td>
</tr>
<tr>
<td>1.0</td>
<td>OBRAS DE LIMPIEZA DE POZO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Acondicionamiento de terreno</td>
<td>m³</td>
<td>1000</td>
<td>0,40</td>
<td>400,00</td>
</tr>
<tr>
<td>1.2</td>
<td>Transporte de equipo de limpieza</td>
<td>Pozo</td>
<td>4</td>
<td>250,00</td>
<td>1,000,00</td>
</tr>
<tr>
<td>1.3</td>
<td>Desmontaje - Equipo - Bomba Existente</td>
<td>Pozo</td>
<td>10</td>
<td>334,60</td>
<td>3,346,00</td>
</tr>
<tr>
<td>1.4</td>
<td>Limpieza y Recuperación de fondo</td>
<td>Pozo</td>
<td>4</td>
<td>1,395,00</td>
<td>5,580,00</td>
</tr>
<tr>
<td>1.5</td>
<td>Desarmado de Pozo</td>
<td>Pozo</td>
<td>4</td>
<td>1,672,00</td>
<td>6,688,00</td>
</tr>
<tr>
<td>1.6</td>
<td>Transporte - Equipo - Prueba de bombeo</td>
<td>Equipo</td>
<td>10</td>
<td>282,00</td>
<td>2,820,00</td>
</tr>
<tr>
<td>1.7</td>
<td>Prueba de Bombeo</td>
<td>Pozo</td>
<td>10</td>
<td>1,057,10</td>
<td>10,571,00</td>
</tr>
<tr>
<td>1.9</td>
<td>Muestra - Agua Analisis Fisico Quimico</td>
<td>Muestra</td>
<td>10</td>
<td>100,00</td>
<td>1,000,00</td>
</tr>
</tbody>
</table>

### OBRAS CIVILES

#### POZO SAN VICENTE IRHS 099

<table>
<thead>
<tr>
<th>ITEM</th>
<th>PARTICIPACIÓN</th>
<th>UNIDAD</th>
<th>CANT.</th>
<th>COSTOS S/.</th>
<th>PARCIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>POZA DE DISPACION</td>
<td></td>
<td></td>
<td></td>
<td>1272,04</td>
</tr>
<tr>
<td>1.1</td>
<td>Excavación</td>
<td>m³</td>
<td>0,45</td>
<td>14,80</td>
<td>6,66</td>
</tr>
<tr>
<td>1.2</td>
<td>Concreto Fc = 175 kg x cm²</td>
<td>m³</td>
<td>1,41</td>
<td>244,72</td>
<td>345,06</td>
</tr>
<tr>
<td>1.3</td>
<td>Acero</td>
<td>kg</td>
<td>58,05</td>
<td>3,68</td>
<td>250,42</td>
</tr>
<tr>
<td>1.4</td>
<td>Encofrado y desencofrado</td>
<td>m2</td>
<td>14</td>
<td>26,53</td>
<td>371,12</td>
</tr>
<tr>
<td>1.5</td>
<td>Terrajeo mortero 1:5</td>
<td>m2</td>
<td>14</td>
<td>21,33</td>
<td>298,45</td>
</tr>
<tr>
<td>2.0</td>
<td>CONSTRUCCION DE BASE</td>
<td></td>
<td></td>
<td>831,53</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Excavación</td>
<td>m³</td>
<td>1,6</td>
<td>14,80</td>
<td>23,68</td>
</tr>
<tr>
<td>2.2</td>
<td>Concreto Fc = 175 kg/m²+30%PM</td>
<td>m³</td>
<td>2,0</td>
<td>222,29</td>
<td>444,58</td>
</tr>
<tr>
<td>2.3</td>
<td>Encofrado Desencofrado</td>
<td>m³</td>
<td>2,4</td>
<td>26,53</td>
<td>63,67</td>
</tr>
<tr>
<td>2.4</td>
<td>Rieles de Apoyo (2) - 3m x 0,20 m x 0,10 m</td>
<td>m</td>
<td>6,0</td>
<td>50,00</td>
<td>300,00</td>
</tr>
<tr>
<td>3.0</td>
<td>CONSTRUCCION DE CANAL 90 M</td>
<td></td>
<td></td>
<td>1528,87</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Taladro</td>
<td>m³</td>
<td>9</td>
<td>14,80</td>
<td>133,20</td>
</tr>
<tr>
<td>3.2</td>
<td>Concreto Fc = 140 kg x cm²</td>
<td>m³</td>
<td>2,1</td>
<td>224,72</td>
<td>471,51</td>
</tr>
<tr>
<td>3.3</td>
<td>Alberafia de Ladrillo de Soja</td>
<td>m²</td>
<td>15</td>
<td>30</td>
<td>540,00</td>
</tr>
<tr>
<td>3.4</td>
<td>Terrajeo mortero 1:5</td>
<td>m²</td>
<td>18</td>
<td>21,32</td>
<td>383,76</td>
</tr>
</tbody>
</table>

TOTAL: 5513,90
### ANEXO Nº 1
### CUADRO Nº 2

#### PRESUPUESTO BASE

**REHABILITACIÓN Y DESARROLLO DE POZOS**

<table>
<thead>
<tr>
<th>COMISIÓN DE REGANTES: CHARANAL</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ITEM</strong></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td><strong>1.0</strong></td>
</tr>
<tr>
<td>1.1</td>
</tr>
<tr>
<td>1.2</td>
</tr>
<tr>
<td>1.3</td>
</tr>
<tr>
<td>1.4</td>
</tr>
<tr>
<td>1.5</td>
</tr>
<tr>
<td>1.6</td>
</tr>
<tr>
<td>1.7</td>
</tr>
<tr>
<td>1.9</td>
</tr>
</tbody>
</table>

**TOTAL**: 19.815,40

### OBRAS CIVILES

**POZO SANTA ISABEL IRHS 384**

<table>
<thead>
<tr>
<th>COMISIÓN DE REGANTES: CHARANAL</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ITEM</strong></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td><strong>1.0</strong></td>
</tr>
<tr>
<td>1.1</td>
</tr>
<tr>
<td>1.2</td>
</tr>
<tr>
<td>1.3</td>
</tr>
<tr>
<td>1.4</td>
</tr>
<tr>
<td><strong>2.0</strong></td>
</tr>
<tr>
<td>2.1</td>
</tr>
<tr>
<td>2.2</td>
</tr>
<tr>
<td>2.3</td>
</tr>
<tr>
<td>2.4</td>
</tr>
<tr>
<td>2.5</td>
</tr>
<tr>
<td><strong>3.0</strong></td>
</tr>
<tr>
<td>3.1</td>
</tr>
<tr>
<td>3.2</td>
</tr>
<tr>
<td>3.3</td>
</tr>
<tr>
<td>3.4</td>
</tr>
</tbody>
</table>

**TOTAL**: 3600,77
ANEXO Nº 1

CUADRO Nº 2

PRESUPUESTO BASE
REHABILITACIÓN Y DESARROLLO DE POZOS

COMISIÓN DE REGANTES: YAPATERA - CHULUCANAS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>PARTIDA</th>
<th>UNIDAD</th>
<th>CANT.</th>
<th>COSTOS S/</th>
<th>POZOS - IRHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Acondicionamiento de terreno</td>
<td>m³</td>
<td>600</td>
<td>0.40</td>
<td>240.00</td>
</tr>
<tr>
<td>1.2</td>
<td>Transporte de equipo de limpieza</td>
<td>Pozo</td>
<td>5</td>
<td>250.00</td>
<td>1,250.00</td>
</tr>
<tr>
<td>1.3</td>
<td>Desmontaje - equipo - bombeo existente</td>
<td>Pozo</td>
<td>5</td>
<td>334.60</td>
<td>1,672.00</td>
</tr>
<tr>
<td>1.4</td>
<td>Limpieza y recuperación de fondo</td>
<td>Pozo</td>
<td>5</td>
<td>1,395.00</td>
<td>6,975.00</td>
</tr>
<tr>
<td>1.5</td>
<td>Desarrollo de Pozo</td>
<td>Pozo</td>
<td>5</td>
<td>1,672.00</td>
<td>1,672.00</td>
</tr>
<tr>
<td>1.6</td>
<td>Rehabilitación del Pozo</td>
<td>Pozo</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1.7</td>
<td>Desarrollo del Pozo</td>
<td>Pozo</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1.8</td>
<td>Transporte - equipo - prueba de bombeo</td>
<td>Equipo</td>
<td>8</td>
<td>282.00</td>
<td>1,572.00</td>
</tr>
<tr>
<td>1.9</td>
<td>Prueba de bombeo</td>
<td>Pozo</td>
<td>6</td>
<td>1,057.10</td>
<td>6,342.60</td>
</tr>
<tr>
<td>1.10</td>
<td>instalación - equipo - bombeo existente o definitivo</td>
<td>Equipo</td>
<td>6</td>
<td>383.20</td>
<td>1,199.20</td>
</tr>
<tr>
<td>1.11</td>
<td>Muestra - agua analítica físico químico</td>
<td>Muestra</td>
<td>6</td>
<td>100.00</td>
<td>600.00</td>
</tr>
</tbody>
</table>

TOTAL | 29,431.80 | 5,513.90 | 5,513.90 | 2,196.90 | 5,179.30 | 5,513.90 |

COMISIÓN DE REGANTES: VICUS - CHULUCANAS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>PARTIDA</th>
<th>UNIDAD</th>
<th>CANT.</th>
<th>COSTOS S/</th>
<th>POZOS - IRHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Acondicionamiento de terreno</td>
<td>m³</td>
<td>400</td>
<td>0.40</td>
<td>160.00</td>
</tr>
<tr>
<td>1.2</td>
<td>Transporte de equipo de limpieza</td>
<td>Pozo</td>
<td>1</td>
<td>250.00</td>
<td>250.00</td>
</tr>
<tr>
<td>1.3</td>
<td>Desmontaje - equipo - bombeo existente</td>
<td>Pozo</td>
<td>4</td>
<td>334.60</td>
<td>1,338.40</td>
</tr>
<tr>
<td>1.4</td>
<td>Limpieza y recuperación de fondo</td>
<td>Pozo</td>
<td>1</td>
<td>1,395.00</td>
<td>1,395.00</td>
</tr>
<tr>
<td>1.5</td>
<td>Desarrollo de Pozo</td>
<td>Pozo</td>
<td>1</td>
<td>1,672.00</td>
<td>1,672.00</td>
</tr>
<tr>
<td>1.6</td>
<td>Transporte - equipo - prueba de bombeo</td>
<td>Equipo</td>
<td>4</td>
<td>282.00</td>
<td>1,128.00</td>
</tr>
<tr>
<td>1.7</td>
<td>Prueba de bombeo</td>
<td>Pozo</td>
<td>4</td>
<td>1,057.10</td>
<td>4,228.40</td>
</tr>
<tr>
<td>1.8</td>
<td>instalación - equipo - bombeo existente o definitivo</td>
<td>Equipo</td>
<td>4</td>
<td>383.20</td>
<td>1,532.80</td>
</tr>
<tr>
<td>1.9</td>
<td>Muestra - agua analítica físico químico</td>
<td>Muestra</td>
<td>4</td>
<td>100.00</td>
<td>400.00</td>
</tr>
</tbody>
</table>

TOTAL | 12,104.60 | 2,196.90 | 2,196.90 | 2,196.90 | 5,513.90 |
ANEXO Nº 1
CUADRO Nº 2
PRESUPUESTO BASE
REHABILITACIÓN Y DESARROLLO DE POZO
COMISION DE REGANTES: SANCOR - CHULUCANAS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>PARTIDA</th>
<th>UNIDAD</th>
<th>CANT.</th>
<th>COSTOS SI.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UNITARIO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
</tr>
<tr>
<td>1.0</td>
<td>OBRAS DE LIMPIEZA DE POZO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Acondicionamiento de terreno</td>
<td>m²</td>
<td>100</td>
<td>0,40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40,00</td>
</tr>
<tr>
<td>1.2</td>
<td>Transporte de equipo de limpieza</td>
<td>Pozo</td>
<td>1</td>
<td>250,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>250,00</td>
</tr>
<tr>
<td>1.3</td>
<td>Desmontaje - Equipo - Bombeo Existente</td>
<td>Pozo</td>
<td>1</td>
<td>334,60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>334,60</td>
</tr>
<tr>
<td>1.4</td>
<td>Limpieza y Recuperación de fondo</td>
<td>Pozo</td>
<td>1</td>
<td>1.395,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.395,00</td>
</tr>
<tr>
<td>1.5</td>
<td>Desarrollo de Pozo</td>
<td>Pozo</td>
<td>1</td>
<td>1.672,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.672,00</td>
</tr>
<tr>
<td>1.6</td>
<td>Transporte - Equipo - Prueba de bombeo</td>
<td>Equipo</td>
<td>1</td>
<td>282,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>282,00</td>
</tr>
<tr>
<td>1.7</td>
<td>Prueba de Bombeo</td>
<td>Pozo</td>
<td>1</td>
<td>1.057,10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.057,10</td>
</tr>
<tr>
<td>1.8</td>
<td>Inst de Equipo - Bombeo existente o Definitivo</td>
<td>Equipo</td>
<td>1</td>
<td>383,20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>383,20</td>
</tr>
<tr>
<td>1.9</td>
<td>Muestra - Agua Analisis Físico Químico</td>
<td>Muestra</td>
<td>1</td>
<td>100,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>5.513,90</td>
</tr>
</tbody>
</table>

POZO LA TERCEA IRHS Nº 564

<table>
<thead>
<tr>
<th>ITEM</th>
<th>PARTIDA</th>
<th>UNIDAD</th>
<th>CANT.</th>
<th>COSTOS SI.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UNITARIO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PARCIAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
</tr>
<tr>
<td>1.0</td>
<td>CONSTRUCCION DE BASE</td>
<td></td>
<td></td>
<td>831,93</td>
</tr>
<tr>
<td>1.2</td>
<td>Excavación</td>
<td>m3</td>
<td>1,6</td>
<td>14,90</td>
</tr>
<tr>
<td>1.3</td>
<td>Concreto Fc = 175 kg/cm2+30%PM.</td>
<td>m3</td>
<td>2,0</td>
<td>222,29</td>
</tr>
<tr>
<td>1.4</td>
<td>Encofrado Desencofrado</td>
<td>m2</td>
<td>2,4</td>
<td>26,53</td>
</tr>
<tr>
<td>1.5</td>
<td>Rieles de Apoyo (2) - 3m x 0.20 m x 0.10 m</td>
<td>m</td>
<td>6,0</td>
<td>50,00</td>
</tr>
<tr>
<td>2.0</td>
<td>POZA DE DISIPACION</td>
<td></td>
<td></td>
<td>1272,04</td>
</tr>
<tr>
<td>2.1</td>
<td>Excavación</td>
<td>m3</td>
<td>0,45</td>
<td>14,80</td>
</tr>
<tr>
<td>2.2</td>
<td>Concreto Fc = 175 kg x cm2</td>
<td>m3</td>
<td>1,41</td>
<td>244,72</td>
</tr>
<tr>
<td>2.3</td>
<td>Acero</td>
<td>kg</td>
<td>66,05</td>
<td>3,66</td>
</tr>
<tr>
<td>2.4</td>
<td>Encofrado y desencofrado</td>
<td>m2</td>
<td>14</td>
<td>26,53</td>
</tr>
<tr>
<td>2.5</td>
<td>Terrajeo mortero 1:5</td>
<td>m2</td>
<td>14</td>
<td>21,32</td>
</tr>
<tr>
<td>3.0</td>
<td>CONSTRUCCION DE CANAL 30 M</td>
<td></td>
<td></td>
<td>1528,67</td>
</tr>
<tr>
<td>3.1</td>
<td>Relleno</td>
<td>m3</td>
<td>9</td>
<td>14,80</td>
</tr>
<tr>
<td>3.2</td>
<td>Concreto Fc = 140 kg x cm2</td>
<td>m3</td>
<td>2,1</td>
<td>224,72</td>
</tr>
<tr>
<td>3.3</td>
<td>Albañilería de Ladrillo de Soga</td>
<td>m2</td>
<td>18</td>
<td>30</td>
</tr>
<tr>
<td>3.4</td>
<td>Terrajeo mortero 1:5</td>
<td>m2</td>
<td>16</td>
<td>21,32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>3632,84</td>
</tr>
</tbody>
</table>
**REQUERIMIENTO DE INSUMOS**

**REHABILITACIÓN Y DESARROLLO DE POZOS - VALLE ALTO PIURA**

**SECTOR DE RIEGO MALACASI POZO TAMARINDO IRHS 162**

<table>
<thead>
<tr>
<th>PART</th>
<th>PARTIDA</th>
<th>UNIDAD</th>
<th>CANT.</th>
<th>COSTOS S/</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MANO DE OBRA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Técnico</td>
<td>H-H</td>
<td>83,67</td>
<td>6,00</td>
<td>502,00</td>
</tr>
<tr>
<td>39</td>
<td>Operario</td>
<td>H-H</td>
<td>61,00</td>
<td>5,00</td>
<td>305,00</td>
</tr>
<tr>
<td>39</td>
<td>Oficial</td>
<td>H-H</td>
<td>88,00</td>
<td>4,00</td>
<td>352,00</td>
</tr>
<tr>
<td>39</td>
<td>Peón</td>
<td>H-H</td>
<td>114,00</td>
<td>2,50</td>
<td>285,00</td>
</tr>
<tr>
<td></td>
<td>MATERIALES</td>
<td></td>
<td></td>
<td></td>
<td>855,90</td>
</tr>
<tr>
<td>23</td>
<td>Petroleo</td>
<td>Gln</td>
<td>39,00</td>
<td>9,60</td>
<td>374,4</td>
</tr>
<tr>
<td>23</td>
<td>Aceite</td>
<td>Gln</td>
<td>0,50</td>
<td>23,00</td>
<td>11,50</td>
</tr>
<tr>
<td>23</td>
<td>Grasa</td>
<td>Lbs</td>
<td>1,00</td>
<td>5,00</td>
<td>5,00</td>
</tr>
<tr>
<td>29</td>
<td>Aditivo Químico</td>
<td>Kg</td>
<td>25,00</td>
<td>15,00</td>
<td>375,00</td>
</tr>
<tr>
<td>29</td>
<td>Grava &lt; 3/4&quot;</td>
<td>M3</td>
<td>3,00</td>
<td>30,00</td>
<td>90,00</td>
</tr>
<tr>
<td></td>
<td>EQUIPOS-HERRAMIENTAS</td>
<td></td>
<td></td>
<td>3.114,00</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Movilidad de Apoyo</td>
<td>H-M</td>
<td>32,00</td>
<td>18,75</td>
<td>600,00</td>
</tr>
<tr>
<td>39</td>
<td>Compresora</td>
<td>H-M</td>
<td>19,00</td>
<td>100,00</td>
<td>1.900,00</td>
</tr>
<tr>
<td>39</td>
<td>Prueba de bombeo</td>
<td>H-E</td>
<td>24,00</td>
<td>10,00</td>
<td>240,00</td>
</tr>
<tr>
<td>39</td>
<td>Equipo de Verticalidad</td>
<td>H-E</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>30</td>
<td>Equipo de Medición</td>
<td>H-E</td>
<td>1,00</td>
<td>20,00</td>
<td>20,00</td>
</tr>
<tr>
<td>30</td>
<td>Herramientas</td>
<td>H-E</td>
<td>64,00</td>
<td>5,00</td>
<td>320,00</td>
</tr>
<tr>
<td>30</td>
<td>Accesorios Eléctricos</td>
<td>Glb</td>
<td>1,00</td>
<td>34,00</td>
<td>34,00</td>
</tr>
<tr>
<td></td>
<td>MUESTRA DE AGUA</td>
<td></td>
<td></td>
<td>100,00</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Análisis Físico-Químico</td>
<td>Muestra</td>
<td>1,00</td>
<td>100,00</td>
<td>100,00</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>5.515,90</td>
<td></td>
</tr>
</tbody>
</table>

**REQUERIMIENTO DE INSUMOS - OBRAS CIVILES**

**POZO TAMARINDO IRHS 162**

<table>
<thead>
<tr>
<th>PART</th>
<th>PARTIDA</th>
<th>UNIDAD</th>
<th>CANT.</th>
<th>COSTOS S/</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MANO DE OBRA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Capataz</td>
<td>H-H</td>
<td>4,21</td>
<td>6,00</td>
<td>25,26</td>
</tr>
<tr>
<td>39</td>
<td>Operario</td>
<td>H-H</td>
<td>2,29</td>
<td>5,00</td>
<td>11,43</td>
</tr>
<tr>
<td>39</td>
<td>Oficial</td>
<td>H-H</td>
<td>6,13</td>
<td>4,00</td>
<td>24,50</td>
</tr>
<tr>
<td>39</td>
<td>Peón</td>
<td>H-H</td>
<td>23,95</td>
<td>2,50</td>
<td>59,88</td>
</tr>
<tr>
<td></td>
<td>MATERIALES</td>
<td></td>
<td></td>
<td>710,86</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Arena</td>
<td>M3</td>
<td>1,00</td>
<td>25,00</td>
<td>25,00</td>
</tr>
<tr>
<td>29</td>
<td>Piedra chancada</td>
<td>M3</td>
<td>1,10</td>
<td>30,00</td>
<td>33,00</td>
</tr>
<tr>
<td>29</td>
<td>Piedra mediana</td>
<td>M3</td>
<td>0,60</td>
<td>30,00</td>
<td>18,00</td>
</tr>
<tr>
<td>29</td>
<td>Cemento</td>
<td>Bolsas</td>
<td>15,00</td>
<td>20,00</td>
<td>300,00</td>
</tr>
<tr>
<td>29</td>
<td>Madera</td>
<td>P2</td>
<td>9,60</td>
<td>3,50</td>
<td>33,60</td>
</tr>
<tr>
<td>29</td>
<td>Clavo</td>
<td>Kgs</td>
<td>0,36</td>
<td>3,50</td>
<td>1,26</td>
</tr>
<tr>
<td>30</td>
<td>Rieles</td>
<td>M L</td>
<td>6,00</td>
<td>50,00</td>
<td>300,00</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>831,93</td>
<td></td>
</tr>
</tbody>
</table>

*Anexo No 1*

*Cuadro No 3*
## REQUERIMIENTO DE INSUMOS
REHABILITACIÓN Y DESARROLLO DE POZOS - VALLE ALTO PIURA

### SECTOR DE RIEGO : LA GALLEGA - MORROPON

| PART | PARTIDA | UNIDAD | CANT. | COSTOS S/.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UNITARIO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PARCIAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>035</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>038</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>039</td>
</tr>
<tr>
<td>MANO DE OBRA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Técnico</td>
<td>H-H</td>
<td>218,00</td>
<td>6,00</td>
</tr>
<tr>
<td>39</td>
<td>Operario</td>
<td>H-H</td>
<td>158,00</td>
<td>5,00</td>
</tr>
<tr>
<td>39</td>
<td>Oficial</td>
<td>H-H</td>
<td>228,00</td>
<td>4,00</td>
</tr>
<tr>
<td>39</td>
<td>Peda</td>
<td>H-H</td>
<td>308,00</td>
<td>2,50</td>
</tr>
<tr>
<td>MATERIALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Petróleo</td>
<td>Gln</td>
<td>117,00</td>
<td>9,60</td>
</tr>
<tr>
<td>23</td>
<td>Aceite</td>
<td>Gln</td>
<td>4,31</td>
<td>8,00</td>
</tr>
<tr>
<td>23</td>
<td>Grasa</td>
<td>Lbs</td>
<td>3,00</td>
<td>15,00</td>
</tr>
<tr>
<td>29</td>
<td>Aditivo Químico</td>
<td>Kg</td>
<td>50,00</td>
<td>15,00</td>
</tr>
<tr>
<td>29</td>
<td>Grava &lt; 3/4&quot;</td>
<td>M3</td>
<td>6,00</td>
<td>30,00</td>
</tr>
<tr>
<td>EQUIPOS - HERRAMIENTAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Movilidad de Apoyo</td>
<td>H-M</td>
<td>80,00</td>
<td>18,75</td>
</tr>
<tr>
<td>39</td>
<td>Compresora</td>
<td>H-M</td>
<td>38,00</td>
<td>100,00</td>
</tr>
<tr>
<td>39</td>
<td>Prueba de bombeo</td>
<td>H-E</td>
<td>3,00</td>
<td>240,00</td>
</tr>
<tr>
<td>39</td>
<td>Equipo de Verticalidad</td>
<td>H-E</td>
<td>3,00</td>
<td>240,00</td>
</tr>
<tr>
<td>39</td>
<td>Equipo de Medición</td>
<td>H-E</td>
<td>172,00</td>
<td>5,00</td>
</tr>
<tr>
<td>39</td>
<td>Herramientas</td>
<td>Glb</td>
<td>3,00</td>
<td>34,00</td>
</tr>
<tr>
<td>39</td>
<td>Herramientas</td>
<td>Glb</td>
<td>3,00</td>
<td>34,00</td>
</tr>
<tr>
<td>MUESTRA DE AGUA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Análisis Físico-Químico</td>
<td>Mluec</td>
<td>3,00</td>
<td>100,00</td>
</tr>
</tbody>
</table>

**TOTAL**: 13,324,70

### REQUERIMIENTO DE INSUMOS - OBRAS CIVILES

COMISIÓN DE REGANTES LA GALLEGA POZO EL TITE IRHS 038

| PART | PARTIDA | UNIDAD | CANT. | COSTOS S/.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UNITARIO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PARCIAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>035</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>038</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>039</td>
</tr>
<tr>
<td>MANO DE OBRA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Capataz</td>
<td>H-H</td>
<td>53,99</td>
<td>6,00</td>
</tr>
<tr>
<td>39</td>
<td>Operario</td>
<td>H-H</td>
<td>4,02</td>
<td>5,00</td>
</tr>
<tr>
<td>39</td>
<td>Oficial</td>
<td>H-H</td>
<td>98,62</td>
<td>5,00</td>
</tr>
<tr>
<td>39</td>
<td>Peda</td>
<td>H-H</td>
<td>233,73</td>
<td>3,50</td>
</tr>
<tr>
<td>MATERIALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Arena</td>
<td>M3</td>
<td>4,16</td>
<td>25,00</td>
</tr>
<tr>
<td>29</td>
<td>Piedra chancada</td>
<td>M3</td>
<td>1,93</td>
<td>30,00</td>
</tr>
<tr>
<td>29</td>
<td>Ladrillo</td>
<td>M3</td>
<td>9,90</td>
<td>108,00</td>
</tr>
<tr>
<td>29</td>
<td>Cemento</td>
<td>Bolsa</td>
<td>37,94</td>
<td>20,00</td>
</tr>
<tr>
<td>29</td>
<td>Madera</td>
<td>P2</td>
<td>70,39</td>
<td>246,35</td>
</tr>
<tr>
<td>29</td>
<td>Clavo</td>
<td>Kg</td>
<td>2,10</td>
<td>7,35</td>
</tr>
<tr>
<td>29</td>
<td>Alambre N° 16</td>
<td>Kg</td>
<td>1,94</td>
<td>6,80</td>
</tr>
<tr>
<td>29</td>
<td>Acero &quot;1/2&quot;</td>
<td>Kg</td>
<td>68,02</td>
<td>2,78</td>
</tr>
</tbody>
</table>

**TOTAL**: 2,800,91

---

Leocido Fortunato Ayala Porxez
Ing. Agrícola, Agrónomo
Reg. CIP N° 17847
## REQUERIMIENTO DE INSUMOS

### REHABILITACIÓN Y DESARROLLO DE POZOS - VALLE ALTO PIURA

### SECTOR DE RIEGO: PABUR - LA MATANZA

<table>
<thead>
<tr>
<th>PART</th>
<th>PARTIDA</th>
<th>UNIDAD</th>
<th>CANT.</th>
<th>COSTOS SI PARCIAL</th>
<th>COSTOS SI BASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>Técnico</td>
<td>H-H</td>
<td>638.60</td>
<td>5,00</td>
<td>2.300,00</td>
</tr>
<tr>
<td>39</td>
<td>Operario</td>
<td>H-H</td>
<td>460.00</td>
<td>5,00</td>
<td>2.300,00</td>
</tr>
<tr>
<td>39</td>
<td>Oficial</td>
<td>H-H</td>
<td>664.00</td>
<td>4,00</td>
<td>2.656,00</td>
</tr>
<tr>
<td>39</td>
<td>Pelo</td>
<td>H-H</td>
<td>936.00</td>
<td>2,50</td>
<td>2.340,00</td>
</tr>
</tbody>
</table>

### MATERIALES

<table>
<thead>
<tr>
<th>PART</th>
<th>Materiales</th>
<th>Unidad</th>
<th>CANT.</th>
<th>COSTOS SI PARCIAL</th>
<th>COSTOS SI BASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Ladrillo</td>
<td>M3</td>
<td>10.00</td>
<td>5,00</td>
<td>25,00</td>
</tr>
<tr>
<td>24</td>
<td>Aditivo Químico</td>
<td>Kg</td>
<td>100.00</td>
<td>15,00</td>
<td>1.500,00</td>
</tr>
<tr>
<td>25</td>
<td>Grasa</td>
<td>M3</td>
<td>12.00</td>
<td>20,00</td>
<td>260,00</td>
</tr>
</tbody>
</table>

### EQUIPO-HERRAMIENTAS

<table>
<thead>
<tr>
<th>PART</th>
<th>Materiales</th>
<th>Unidad</th>
<th>CANT.</th>
<th>COSTOS SI PARCIAL</th>
<th>COSTOS SI BASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>Mueble de Ayre</td>
<td>M3-M</td>
<td>224,00</td>
<td>18,75</td>
<td>4.200,00</td>
</tr>
<tr>
<td>39</td>
<td>Compresora</td>
<td>M3-M</td>
<td>10,00</td>
<td>100,00</td>
<td>1.000,00</td>
</tr>
</tbody>
</table>

### MUESTRA DE AGUA

<table>
<thead>
<tr>
<th>PART</th>
<th>Materiales</th>
<th>Unidad</th>
<th>CANT.</th>
<th>COSTOS SI PARCIAL</th>
<th>COSTOS SI BASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>Agregado</td>
<td>M3</td>
<td>10,09</td>
<td>100</td>
<td>1.000,00</td>
</tr>
</tbody>
</table>

### TOTAL

<table>
<thead>
<tr>
<th>PART</th>
<th>Materiales</th>
<th>Unidad</th>
<th>CANT.</th>
<th>COSTOS SI PARCIAL</th>
<th>COSTOS SI BASE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>32.337,00</td>
<td>5.513,00</td>
</tr>
</tbody>
</table>

---

### REQUERIMIENTO DE INSUMOS - OBRAS CIVILES

### COMISIÓN DE REGANTES PABUR: POZO SAN VICENTE IHR 096

<table>
<thead>
<tr>
<th>PART</th>
<th>MATERIALES</th>
<th>UNIDAD</th>
<th>CANT.</th>
<th>COSTOS SI PARCIAL</th>
<th>COSTOS SI BASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Arena</td>
<td>M3</td>
<td>51,6</td>
<td>25,00</td>
<td>1.288,80</td>
</tr>
<tr>
<td>29</td>
<td>Piedra</td>
<td>M3</td>
<td>3,03</td>
<td>20,00</td>
<td>60,60</td>
</tr>
<tr>
<td>29</td>
<td>Piedra</td>
<td>M3</td>
<td>0,60</td>
<td>20,00</td>
<td>12,00</td>
</tr>
</tbody>
</table>

### MATERIALES

<table>
<thead>
<tr>
<th>PART</th>
<th>Materiales</th>
<th>Unidad</th>
<th>CANT.</th>
<th>COSTOS SI PARCIAL</th>
<th>COSTOS SI BASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Arena</td>
<td>M3</td>
<td>51,6</td>
<td>25,00</td>
<td>1.288,80</td>
</tr>
</tbody>
</table>

### TOTAL

<table>
<thead>
<tr>
<th>PART</th>
<th>MATERIALES</th>
<th>UNIDAD</th>
<th>CANT.</th>
<th>COSTOS SI PARCIAL</th>
<th>COSTOS SI BASE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>3.432,25</td>
<td>1.172,04</td>
</tr>
</tbody>
</table>
## CUADRO 3

### REQUERIMIENTO DE INSUMOS

#### SECTOR DE RIESGO: CHARANAL

### REHABILITACIÓN Y DESARROLLO DE POZOS - VALLE ALTO PIURA

<table>
<thead>
<tr>
<th>PART</th>
<th>PARTIDA</th>
<th>UNIDAD</th>
<th>CANT.</th>
<th>COSTOS $</th>
<th>UNITARIO</th>
<th>PARCIAL</th>
<th>813</th>
<th>624</th>
<th>625</th>
<th>626</th>
<th>627</th>
<th>819</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANO DE OBRA</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Técnico</td>
<td>HH</td>
<td>370,00</td>
<td></td>
<td>6,00</td>
<td>2,219,95</td>
<td>304,00</td>
<td>304,00</td>
<td>502,00</td>
<td>304,00</td>
<td>502,00</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Operario</td>
<td>HH</td>
<td>256,00</td>
<td></td>
<td>5,00</td>
<td>1,330,00</td>
<td>180,00</td>
<td>180,00</td>
<td>305,00</td>
<td>180,00</td>
<td>305,00</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Oficial</td>
<td>HH</td>
<td>314,00</td>
<td></td>
<td>4,00</td>
<td>1,538,00</td>
<td>208,00</td>
<td>208,00</td>
<td>332,00</td>
<td>208,00</td>
<td>332,00</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Piel</td>
<td>HH</td>
<td>548,00</td>
<td></td>
<td>3,50</td>
<td>1,937,00</td>
<td>250,00</td>
<td>250,00</td>
<td>295,00</td>
<td>250,00</td>
<td>295,00</td>
<td></td>
</tr>
</tbody>
</table>

### MATERIALES

| | | | | | | | | | | | | |
| MATERIALES | | | | | | | | | | | | |
| 23 | Aceite | Gal | 254,00 | | 9,50 | 2,435,90 | 374,40 | 374,40 | 574,40 | 374,40 | 574,40 | |
| 33 | Rojo | Gal | 303,00 | | 9,00 | 4,545,90 | 676,50 | 676,50 | 1,204,00 | 676,50 | 1,204,00 | |
| 39 | Grasa | Lbs | 6,00 | | 5,00 | 5,00 | 5,00 | 5,00 | 5,00 | 5,00 | |
| 39 | Aditivo Químico | Kg | 50,00 | | 15,00 | 3,750,00 | 500,00 | 500,00 | 375,00 | 500,00 | 375,00 | |
| 29 | Grasa < 3/4" | M3 | 6,00 | | 30,00 | 180,00 | 90,00 | 90,00 | |

### EQUIPOS - HERRAMIENTAS

| | | | | | | | | | | | | |
| EQUIPOS - HERRAMIENTAS | | | | | | | | | | | | |
| 39 | Muestras | | | | | | | | | | | |
| 39 | Muestras | | | | | | | | | | | |
| 39 | | | | | | | | | | | |

### MUESTRA DE AGUA

| | | | | | | | | | | | | |
| MUESTRA DE AGUA | | | | | | | | | | | | |
| 79 | Muestreo Físico -Químico | | | | | | | | | | | |
| 19 | | | | | | | | | | | |

## TOTAL

| | | | | | | | | | | | | |
| TOTAL | | | | | | | | | | | | |
## REQUERIMIENTO DE INSUMOS

### SECTOR DE RIESGO: YAPATERA

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>PARTIDA</th>
<th>UNIDAD</th>
<th>CANT.</th>
<th>COSTOS 91</th>
<th>POZOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UNITARIO</td>
<td>PARCIAL</td>
</tr>
<tr>
<td>MADERA DE OCEA</td>
<td>7,512.00</td>
<td>1,044.00</td>
<td>1,044.00</td>
<td>1,044.00</td>
<td>892.00</td>
</tr>
<tr>
<td>29</td>
<td>Técnico</td>
<td>H-H</td>
<td>459.00</td>
<td>9.00</td>
<td>2,504.00</td>
</tr>
<tr>
<td>39</td>
<td>Operario</td>
<td>H-H</td>
<td>321.00</td>
<td>5.06</td>
<td>1,055.00</td>
</tr>
<tr>
<td>39</td>
<td>Oficial</td>
<td>H-H</td>
<td>482.00</td>
<td>5.06</td>
<td>1,055.00</td>
</tr>
<tr>
<td>39</td>
<td>Pelín</td>
<td>H-H</td>
<td>830.00</td>
<td>2.50</td>
<td>2,175.00</td>
</tr>
</tbody>
</table>

### MATERIALES

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>MATERIAL</th>
<th>UNIDAD</th>
<th>CANT.</th>
<th>COSTOS 91</th>
<th>POZOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Arcos</td>
<td>Gm</td>
<td>233.00</td>
<td>6.01</td>
<td>2,290.00</td>
</tr>
<tr>
<td>29</td>
<td>Acero</td>
<td>Gm</td>
<td>8.63</td>
<td>8.63</td>
<td>8.63</td>
</tr>
<tr>
<td>29</td>
<td>Grasa</td>
<td>Lbs</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>29</td>
<td>Mineral de Apoyo</td>
<td>H-M</td>
<td>12.00</td>
<td>12.00</td>
<td>12.00</td>
</tr>
<tr>
<td>29</td>
<td>Compresor</td>
<td>H-M</td>
<td>35.00</td>
<td>35.00</td>
<td>35.00</td>
</tr>
<tr>
<td>29</td>
<td>Prueba de bimoto</td>
<td>H-L</td>
<td>144.00</td>
<td>144.00</td>
<td>144.00</td>
</tr>
<tr>
<td>29</td>
<td>Equipos de Velocidad</td>
<td>H-E</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>29</td>
<td>Equipos de Medicion</td>
<td>H-E</td>
<td>6.09</td>
<td>6.09</td>
<td>6.09</td>
</tr>
<tr>
<td>29</td>
<td>Herramientas</td>
<td>H-E</td>
<td>34.00</td>
<td>34.00</td>
<td>34.00</td>
</tr>
<tr>
<td>29</td>
<td>Accesorios Electricos</td>
<td>Gb</td>
<td>6.00</td>
<td>6.00</td>
<td>6.00</td>
</tr>
</tbody>
</table>

### EQUIPOS-HERRAMIENTAS

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>EQUIPO</th>
<th>UNIDAD</th>
<th>CANT.</th>
<th>COSTOS 91</th>
<th>POZOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Materia de Apoyo</td>
<td>H-M</td>
<td>57.00</td>
<td>57.00</td>
<td>57.00</td>
</tr>
<tr>
<td>29</td>
<td>Compresor</td>
<td>H-M</td>
<td>35.00</td>
<td>35.00</td>
<td>35.00</td>
</tr>
<tr>
<td>29</td>
<td>Prueba de bimoto</td>
<td>H-L</td>
<td>144.00</td>
<td>144.00</td>
<td>144.00</td>
</tr>
<tr>
<td>29</td>
<td>Equipos de Velocidad</td>
<td>H-E</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>29</td>
<td>Herramientas</td>
<td>H-E</td>
<td>36.00</td>
<td>36.00</td>
<td>36.00</td>
</tr>
<tr>
<td>29</td>
<td>Accesorios Electricos</td>
<td>Gb</td>
<td>6.00</td>
<td>6.00</td>
<td>6.00</td>
</tr>
</tbody>
</table>

### MUESTRA DE AGUA

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>MUESTRA</th>
<th>UNIDAD</th>
<th>CANT.</th>
<th>COSTOS 91</th>
<th>POZOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Muestra</td>
<td>Gb</td>
<td>6.00</td>
<td>6.00</td>
<td>6.00</td>
</tr>
</tbody>
</table>

### TOTAL

25,512.00 | 5,513.90 | 5,513.90 | 5,513.90 | 2,196.90 | 6,171.90 | 5,513.90

## REHABILITACIÓN Y DESARROLLO DE POZOS - VALLE ALTO PIURA

### SECTOR DE RIESGO: YUCAPIS

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>PARTIDA</th>
<th>UNIDAD</th>
<th>CANT.</th>
<th>COSTOS 91</th>
<th>POZOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UNITARIO</td>
<td>PARCIAL</td>
</tr>
<tr>
<td>MADERA DE OCEA</td>
<td>4,016.00</td>
<td>830.00</td>
<td>830.00</td>
<td>830.00</td>
<td>830.00</td>
</tr>
<tr>
<td>29</td>
<td>Técnico</td>
<td>H-H</td>
<td>235.61</td>
<td>6.96</td>
<td>1,417.60</td>
</tr>
<tr>
<td>29</td>
<td>Operario</td>
<td>H-H</td>
<td>169.00</td>
<td>5.06</td>
<td>1,055.00</td>
</tr>
<tr>
<td>29</td>
<td>Oficial</td>
<td>H-H</td>
<td>244.00</td>
<td>5.06</td>
<td>1,055.00</td>
</tr>
<tr>
<td>29</td>
<td>Pelín</td>
<td>H-H</td>
<td>354.00</td>
<td>2.50</td>
<td>885.00</td>
</tr>
</tbody>
</table>

### MATERIALES

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>MATERIAL</th>
<th>UNIDAD</th>
<th>CANT.</th>
<th>COSTOS 91</th>
<th>POZOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Arcos</td>
<td>Gm</td>
<td>154.00</td>
<td>9.61</td>
<td>1,542.00</td>
</tr>
<tr>
<td>29</td>
<td>Acero</td>
<td>Gm</td>
<td>19.00</td>
<td>19.00</td>
<td>19.00</td>
</tr>
<tr>
<td>29</td>
<td>Grasa</td>
<td>Lbs</td>
<td>4.00</td>
<td>5.00</td>
<td>20.00</td>
</tr>
<tr>
<td>29</td>
<td>Mineral de Apoyo</td>
<td>H-M</td>
<td>25.00</td>
<td>15.00</td>
<td>375.00</td>
</tr>
<tr>
<td>29</td>
<td>Compresor</td>
<td>H-M</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
</tr>
</tbody>
</table>

### EQUIPOS-HERRAMIENTAS

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>EQUIPO</th>
<th>UNIDAD</th>
<th>CANT.</th>
<th>COSTOS 91</th>
<th>POZOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Materia de Apoyo</td>
<td>H-M</td>
<td>68.00</td>
<td>58.00</td>
<td>58.00</td>
</tr>
<tr>
<td>29</td>
<td>Compresor</td>
<td>H-M</td>
<td>35.00</td>
<td>35.00</td>
<td>35.00</td>
</tr>
<tr>
<td>29</td>
<td>Prueba de bimoto</td>
<td>H-L</td>
<td>144.00</td>
<td>144.00</td>
<td>144.00</td>
</tr>
<tr>
<td>29</td>
<td>Equipos de Velocidad</td>
<td>H-E</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Herramientas</td>
<td>H-E</td>
<td>36.00</td>
<td>36.00</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Accesorios Electricos</td>
<td>Gb</td>
<td>6.00</td>
<td>6.00</td>
<td></td>
</tr>
</tbody>
</table>

### MUESTRA DE AGUA

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>MUESTRA</th>
<th>UNIDAD</th>
<th>CANT.</th>
<th>COSTOS 91</th>
<th>POZOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Muestra</td>
<td>Gb</td>
<td>6.00</td>
<td>6.00</td>
<td></td>
</tr>
</tbody>
</table>

### TOTAL

4,016.00 | 630.00 | 630.00 | 630.00 | 1210.00 | 3,114.00 | 3,114.00 | 3,114.00 | 834.00 | 2,969.00 | 3,114.00

---

[Signature]

Leocion Fortunato Ayala 31'1'13quez
Ingeniero Agrónomo
Reg. CIP No. 17347
# REQUERIMIENTO DE INSUMOS

**OBRAS Y/O TRABAJOS DE LIMPIEZA Y DESARROLLO DE POZOS - VALLE ALTO PIURA**

## SECTOR DE RIEGO: SANCOR

### MANO DE OBRA

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>UNIDAD</th>
<th>CANT.</th>
<th>COSTOS S./ U.</th>
<th>PARCIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>Técnico</td>
<td>H-H</td>
<td>83,67</td>
<td>6,00</td>
</tr>
<tr>
<td>39</td>
<td>Operario</td>
<td>H-H</td>
<td>61,00</td>
<td>5,00</td>
</tr>
<tr>
<td>39</td>
<td>Oficial</td>
<td>H-H</td>
<td>88,00</td>
<td>4,00</td>
</tr>
<tr>
<td>39</td>
<td>Peón</td>
<td>H-H</td>
<td>114,00</td>
<td>2,50</td>
</tr>
</tbody>
</table>

### MATERIALES

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>UNIDAD</th>
<th>CANT.</th>
<th>COSTOS S./ U.</th>
<th>PARCIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Petróleo</td>
<td>Grl</td>
<td>39,00</td>
<td>9,60</td>
</tr>
<tr>
<td>23</td>
<td>Aceite</td>
<td>Grl</td>
<td>0,50</td>
<td>23,00</td>
</tr>
<tr>
<td>23</td>
<td>Grasa</td>
<td>Ls</td>
<td>1,00</td>
<td>5,00</td>
</tr>
<tr>
<td>29</td>
<td>Aditivo Químico</td>
<td>Kg</td>
<td>25,00</td>
<td>8,00</td>
</tr>
<tr>
<td>29</td>
<td>Grava &lt; 3/4&quot;</td>
<td>M3</td>
<td>3,00</td>
<td>30,00</td>
</tr>
</tbody>
</table>

### EQUIPOS-HERRAMIENTAS

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>UNIDAD</th>
<th>CANT.</th>
<th>COSTOS S./ U.</th>
<th>PARCIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>Movilidad de Apoyo</td>
<td>H-M</td>
<td>32,00</td>
<td>18,75</td>
</tr>
<tr>
<td>39</td>
<td>Compresora</td>
<td>H-M</td>
<td>19,00</td>
<td>100,00</td>
</tr>
<tr>
<td>39</td>
<td>Prueba de bombeo</td>
<td>H-E</td>
<td>24,00</td>
<td>10,00</td>
</tr>
<tr>
<td>39</td>
<td>Equipo de Verticidad</td>
<td>H-E</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>39</td>
<td>Equipo de Medicina</td>
<td>H-E</td>
<td>1,00</td>
<td>20,00</td>
</tr>
<tr>
<td>39</td>
<td>Herramientas</td>
<td>H-E</td>
<td>64,00</td>
<td>5,00</td>
</tr>
<tr>
<td>39</td>
<td>Accesorios Electrónicos</td>
<td>Gif</td>
<td>1,00</td>
<td>34,00</td>
</tr>
</tbody>
</table>

### MUESTRA DE AGUA

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Costos S./ U.</th>
<th>PARCIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>Análisis Físico-Químico</td>
<td>100,00</td>
</tr>
</tbody>
</table>

### TOTAL MANO DE OBRA

| MANO DE OBRA | 1.444,00 |

---

# REQUERIMIENTO DE INSUMOS - OBRAS CIVILES

**SECTOR DE RIEGO: SANCOR POZO LA TERCERA IRHS 564**

### MANO DE OBRA

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>UNIDAD</th>
<th>CANT.</th>
<th>COSTOS S./ U.</th>
<th>PARCIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>Capataz</td>
<td>H-H</td>
<td>58,20</td>
<td>6,00</td>
</tr>
<tr>
<td>39</td>
<td>Guardia</td>
<td>H-H</td>
<td>6,30</td>
<td>5,00</td>
</tr>
<tr>
<td>39</td>
<td>Oficial</td>
<td>H-H</td>
<td>104,75</td>
<td>4,00</td>
</tr>
<tr>
<td>39</td>
<td>Peón</td>
<td>H-H</td>
<td>257,68</td>
<td>2,50</td>
</tr>
</tbody>
</table>

### MATERIALES

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>UNIDAD</th>
<th>COSTOS S./ U.</th>
<th>PARCIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Arena</td>
<td>M3</td>
<td>5,16</td>
</tr>
<tr>
<td>29</td>
<td>Piedra chancada</td>
<td>M3</td>
<td>3,03</td>
</tr>
<tr>
<td>29</td>
<td>Piedra mediana</td>
<td>M3</td>
<td>0,60</td>
</tr>
<tr>
<td>29</td>
<td>Ladrillo</td>
<td>Millar</td>
<td>3,25</td>
</tr>
<tr>
<td>29</td>
<td>Cemento</td>
<td>Bolsas</td>
<td>49,76</td>
</tr>
<tr>
<td>29</td>
<td>Madera</td>
<td>Pz</td>
<td>17,67</td>
</tr>
<tr>
<td>29</td>
<td>Clavo</td>
<td>Kgs</td>
<td>2,46</td>
</tr>
<tr>
<td>29</td>
<td>Rieles</td>
<td>M L</td>
<td>390,00</td>
</tr>
<tr>
<td>29</td>
<td>Alambres Nº 16</td>
<td>Kgs</td>
<td>1,70</td>
</tr>
<tr>
<td>29</td>
<td>Acero &quot;1/2&quot;</td>
<td>Kgs</td>
<td>68,01</td>
</tr>
</tbody>
</table>

### TOTAL MATERIALES

| MATERIALES | 2.188,95 |

---

### TOTAL REQUERIMIENTO DE INSUMOS - OBRAS CIVILES

| BASE | 121,07 |

---

*Leonardo Fortunato Ayala Bichet*

**Ingeniero Agrónomo**

Reg. CIP No 17247
### PLANILLA DE METRADOS - OBRAS CIVILES II ETAPA VALLE ALTO PIURA

#### ANEXO N° 1

#### CUADRO N° 4

<table>
<thead>
<tr>
<th>ITEM</th>
<th>PARTIDAS</th>
<th>UNIDAD</th>
<th>Nº VECES</th>
<th>DIMENSIONES(M)</th>
<th>M²</th>
<th>M³</th>
<th>kg</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>A</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.</td>
<td>CONSTRUCCION DE BASES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1</td>
<td>Excavación</td>
<td>M³</td>
<td>2,00</td>
<td>1,00</td>
<td>1,00</td>
<td>0,80</td>
<td></td>
<td>1,60</td>
</tr>
<tr>
<td>1,2</td>
<td>FC=75 Kg/cm² + 30% PM</td>
<td>M³</td>
<td>2,00</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
<td></td>
<td>2,00</td>
</tr>
<tr>
<td>1,3</td>
<td>Encofrado Desencofrado</td>
<td>M³</td>
<td>8,00</td>
<td>* 1,00</td>
<td>1,00</td>
<td>0,30</td>
<td></td>
<td>2,40</td>
</tr>
<tr>
<td>II.</td>
<td>ANTE POZOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,0</td>
<td>Excavación para Rol</td>
<td>M³</td>
<td>1</td>
<td>3,1416</td>
<td>0,81</td>
<td>1,70</td>
<td></td>
<td>4,33</td>
</tr>
<tr>
<td>2,1</td>
<td>Excavación de Cementación</td>
<td>M³</td>
<td>2</td>
<td>3,1416</td>
<td>0,78</td>
<td>0,3</td>
<td></td>
<td>1,47</td>
</tr>
<tr>
<td>2,2</td>
<td>FC=75 Kg/cm² + 30% PM</td>
<td>M³</td>
<td>2</td>
<td>3,1416</td>
<td>0,78</td>
<td>0,30</td>
<td></td>
<td>1,47</td>
</tr>
<tr>
<td>2,3</td>
<td>Albañilería de Ladrillo - cabeza</td>
<td>M³</td>
<td>2</td>
<td>3,1416</td>
<td>0,775</td>
<td>1,70</td>
<td>8,28</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>POZA DISIPACIÓN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,1</td>
<td>Excavación</td>
<td>m³</td>
<td>1,00</td>
<td>2,00</td>
<td>1,50</td>
<td>0,15</td>
<td></td>
<td>0,45</td>
</tr>
<tr>
<td>3,2</td>
<td>Concreto F'c = 175kglm</td>
<td>m³</td>
<td>1,00</td>
<td>2,00</td>
<td>1,50</td>
<td>0,15</td>
<td></td>
<td>0,45</td>
</tr>
<tr>
<td></td>
<td>Solera</td>
<td>m³</td>
<td>2,00</td>
<td>2,00</td>
<td>1,00</td>
<td>0,15</td>
<td></td>
<td>0,60</td>
</tr>
<tr>
<td></td>
<td>Muro Lateral</td>
<td>m³</td>
<td>2,00</td>
<td>1,20</td>
<td>1,00</td>
<td>0,15</td>
<td></td>
<td>0,36</td>
</tr>
<tr>
<td></td>
<td>Muro Frontal</td>
<td>m³</td>
<td>2,00</td>
<td>1,20</td>
<td>1,00</td>
<td>0,15</td>
<td></td>
<td>0,36</td>
</tr>
<tr>
<td>3,3</td>
<td>Acero</td>
<td>kg</td>
<td>5,00</td>
<td>6,25</td>
<td></td>
<td></td>
<td></td>
<td>31,25</td>
</tr>
<tr>
<td></td>
<td>Transversal</td>
<td>kg</td>
<td>32,0C</td>
<td>1,15</td>
<td></td>
<td></td>
<td></td>
<td>35,80</td>
</tr>
<tr>
<td></td>
<td>Verticales</td>
<td>kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,4</td>
<td>Encofrado y Desencofrado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lateral</td>
<td>M²</td>
<td>4,00</td>
<td>2,00</td>
<td>1,00</td>
<td></td>
<td></td>
<td>8,00</td>
</tr>
<tr>
<td></td>
<td>Frontal</td>
<td>M²</td>
<td>4,00</td>
<td>1,50</td>
<td>1,00</td>
<td></td>
<td></td>
<td>6,00</td>
</tr>
<tr>
<td>3,5</td>
<td>Terraplen - mortero 1:5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lateral</td>
<td>m³</td>
<td>4,00</td>
<td>2,00</td>
<td>1,00</td>
<td></td>
<td></td>
<td>8,00</td>
</tr>
<tr>
<td></td>
<td>Frontal</td>
<td>m³</td>
<td>4,00</td>
<td>1,50</td>
<td>1,00</td>
<td></td>
<td></td>
<td>6,00</td>
</tr>
<tr>
<td>IV.</td>
<td>CONSTRUCCION DE CANAL(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,1</td>
<td>Relleno</td>
<td>m³</td>
<td>1,03</td>
<td>30,00</td>
<td>1,00</td>
<td>0,30</td>
<td></td>
<td>9,00</td>
</tr>
<tr>
<td>4,2</td>
<td>Concreto F'c = 140kglm2 - Solera</td>
<td>m³</td>
<td>1,00</td>
<td>30,00</td>
<td>0,70</td>
<td>0,10</td>
<td></td>
<td>2,10</td>
</tr>
<tr>
<td>4,3</td>
<td>Albañín de ladrillo 0.22 x 0.13 x 0.10</td>
<td>m³</td>
<td>2,00</td>
<td>30,00</td>
<td>0,30</td>
<td></td>
<td>18,00</td>
<td></td>
</tr>
<tr>
<td>4,4</td>
<td>Terraplen mortero 1:5</td>
<td>m³</td>
<td>2,00</td>
<td>30,00</td>
<td>0,30</td>
<td></td>
<td>18,00</td>
<td></td>
</tr>
</tbody>
</table>

**AUTORIDAD NACIONAL DEL AGUA**
ANEXO II

ANALISIS DE COSTOS UNITARIOS
ANEXO Nº 02

PROGRAMA DE REHABILITACIÓN, ELECTRIFICACIÓN Y EQUIPAMIENTO DE POZOS
VALLE - ALTO PIURA

ANALISIS COSTOS UNITARIOS - TRABAJOS PRELIMINARES

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>Especificaciones</th>
<th>Rendimiento</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alquiler de Almacén, Guardianía - Almacenero</td>
<td>Local para resguardo de equipos de bombeo</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO S/UNITARIO</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alquiler de Almacén</td>
<td>meses</td>
<td>1</td>
<td>400,00</td>
<td>400,00</td>
</tr>
<tr>
<td>Guardian(2)</td>
<td>meses</td>
<td>1</td>
<td>1440,00</td>
<td>1440,00</td>
</tr>
<tr>
<td>Almacenero</td>
<td>meses</td>
<td>1</td>
<td>960,00</td>
<td>960,00</td>
</tr>
<tr>
<td><strong>COSTO UNITARIO</strong></td>
<td></td>
<td></td>
<td><strong>2.800,00</strong></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>Especificaciones</th>
<th>Rendimiento</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acondicionamiento de Equipos MINAG</td>
<td>Poner Operativo el equipo previo al traslado al lugar solicitado</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO S/UNITARIO</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acondicionamiento de equipo de bombeo</td>
<td>Equipo</td>
<td>1</td>
<td>270,00</td>
<td>270,00</td>
</tr>
<tr>
<td><strong>COSTO UNITARIO</strong></td>
<td></td>
<td></td>
<td><strong>270,00</strong></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>Especificaciones</th>
<th>Rendimiento</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diagnostico de Pozos</td>
<td>Caracteristicas del pozo y Equipo de Bombeo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 Pozos / Día</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO S/UNITARIO</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANO DE OBRA</td>
<td>H - H</td>
<td>1,6</td>
<td>6,00</td>
<td>9,60</td>
</tr>
<tr>
<td>Oficial</td>
<td>H - H</td>
<td>1,6</td>
<td>4,00</td>
<td>6,40</td>
</tr>
<tr>
<td>Peon</td>
<td>H - H</td>
<td>1,6</td>
<td>2,50</td>
<td>4,00</td>
</tr>
<tr>
<td>MATERIALES</td>
<td>Und.</td>
<td>0,03</td>
<td>5,00</td>
<td>0,15</td>
</tr>
<tr>
<td>Sonda de Profundidad</td>
<td>Und.</td>
<td>0,03</td>
<td>5,00</td>
<td>0,15</td>
</tr>
<tr>
<td>Wincha de 60 m.</td>
<td>Unid</td>
<td>1</td>
<td>1,20</td>
<td>1,20</td>
</tr>
<tr>
<td>Planos</td>
<td>Glb.</td>
<td>1</td>
<td>2,50</td>
<td>2,50</td>
</tr>
<tr>
<td>EQUIPO</td>
<td>Glb.</td>
<td>1</td>
<td>15,00</td>
<td>15,00</td>
</tr>
<tr>
<td>Movilidad de Apoyo</td>
<td>H - M</td>
<td>1</td>
<td>12,50</td>
<td>12,50</td>
</tr>
<tr>
<td>Sonda Eléctrica - Profundidad</td>
<td>Glb.</td>
<td>1</td>
<td>6,00</td>
<td>6,00</td>
</tr>
<tr>
<td><strong>COSTO UNITARIO</strong></td>
<td></td>
<td></td>
<td><strong>67,50</strong></td>
<td></td>
</tr>
</tbody>
</table>
ANEXO N°02

ANÁLISIS DE COSTOS UNITARIOS

OBRA: PROGRAMA DE REHABILITACIÓN, ELECTRIFICACIÓN Y EQUIPAMIENTO DE POZOS II ETAPA - VALLE ALTO PIURA

REHABILITACIÓN Y DESARROLLO DE POZOS

### MANO DE OBRA

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO SI/ PARCIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANO DE OBRA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peón (2)</td>
<td>H-H</td>
<td>0,16</td>
<td>2,50</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>0,40</td>
</tr>
</tbody>
</table>

### COSTO UNITARIO

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO SI/ PARCIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSTO UNITARIO</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### TRANSPORTE DE EQUIPO DE LIMPIEZA

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO SI/ PARCIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANO DE OBRA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Técnico</td>
<td>H-H</td>
<td>8,00</td>
<td>6,00</td>
</tr>
<tr>
<td>Oficial</td>
<td>H-H</td>
<td>8,00</td>
<td>4,00</td>
</tr>
<tr>
<td>Pedón</td>
<td>H-H</td>
<td>8,00</td>
<td>2,50</td>
</tr>
<tr>
<td>EQUIPO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Movilidad de apoyo</td>
<td>H-M</td>
<td>8,00</td>
<td>10,00</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>150,00</td>
</tr>
</tbody>
</table>

### COSTO UNITARIO

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO SI/ PARCIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSTO UNITARIO</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### DESMONTAJE DE EQUIPO DE BOMBEO EXISTENTE

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO SI/ PARCIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANO DE OBRA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Técnico</td>
<td>H-H</td>
<td>10,00</td>
<td>6,00</td>
</tr>
<tr>
<td>Operario</td>
<td>H-H</td>
<td>10,00</td>
<td>5,00</td>
</tr>
<tr>
<td>Oficial</td>
<td>H-H</td>
<td>10,00</td>
<td>4,00</td>
</tr>
<tr>
<td>Pedón</td>
<td>H-H</td>
<td>20,00</td>
<td>2,50</td>
</tr>
<tr>
<td>MATERIALES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petróleo</td>
<td>Galon</td>
<td>1,00</td>
<td>9,60</td>
</tr>
<tr>
<td>EQUIPO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Movilidad de apoyo</td>
<td>H-M</td>
<td>4,00</td>
<td>18,75</td>
</tr>
<tr>
<td>Herramientas Tecla, Trípode</td>
<td>H-E</td>
<td>10,00</td>
<td>5,00</td>
</tr>
<tr>
<td>y otros</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>334,60</td>
</tr>
</tbody>
</table>

### COSTO UNITARIO

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO SI/ PARCIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSTO UNITARIO</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Firmas:

*Leopoldo Fortunato Ayala Sánchez*

*Ingeniero Agrónomo*

*Reg. CIP N° 17847*
ANEXO Nº02

ANALISIS DE COSTOS UNITARIOS

OBRA: PROGRAMA DE REHABILITACIÓN, ELECTRIFICACIÓN Y EQUIPAMIENTO DE POZOS II ETAPA - VALLE ALTO PIURA

REHABILITACION Y DESARROLLO DE POZOS

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>Especificaciones</th>
<th>Rendimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Limpieza y Recuperación de Fondos</td>
<td>3 Horas de Montaje de equipo + 10 Horas de Rehabilitación</td>
</tr>
</tbody>
</table>

**Unidad**: Pozo

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO SI/ UNITARIO</th>
<th>TOTAL PARCIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MANO DE OBRA</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Técnico</td>
<td>H - H</td>
<td>13,00</td>
<td>6,00</td>
<td>78,00</td>
</tr>
<tr>
<td>Operario</td>
<td>H - H</td>
<td>15,00</td>
<td>5,00</td>
<td>65,00</td>
</tr>
<tr>
<td>Oficial</td>
<td>H - H</td>
<td>15,00</td>
<td>4,00</td>
<td>60,00</td>
</tr>
<tr>
<td>Peón (2)</td>
<td>H - H</td>
<td>26,00</td>
<td>2,50</td>
<td>65,00</td>
</tr>
<tr>
<td><strong>EQUIPO</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Movilidad de apoyo</td>
<td>H - M</td>
<td>4,00</td>
<td>18,75</td>
<td>75,00</td>
</tr>
<tr>
<td>Herramientas Tecno, Tripode</td>
<td>H - E</td>
<td>12,00</td>
<td>5,00</td>
<td>60,00</td>
</tr>
<tr>
<td>Compresora</td>
<td>H - M</td>
<td>10,00</td>
<td>100,00</td>
<td>1000,00</td>
</tr>
<tr>
<td><strong>COSTO UNITARIO</strong></td>
<td></td>
<td></td>
<td></td>
<td><strong>1395,00</strong></td>
</tr>
</tbody>
</table>

**PARTIDA**: Desarrollo de Pozo Estable

Especificaciones: Consiste en aplicar aire comprimido por etapas para aumentar la porosidad y permeabilidad de la zona filtrante.

Rendimiento: 9 Hrs de Desarrollo del pozo + 3 Horas de desmontaje de equipo.

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>Especificaciones</th>
<th>Rendimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Desarrollo de Pozo Estable</td>
<td>9 Hrs de Desarrollo del pozo + 3 Horas de desmontaje de equipo.</td>
</tr>
</tbody>
</table>

| Unidad: Pozo |

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO SI/ UNITARIO</th>
<th>TOTAL PARCIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MANO DE OBRA</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Técnico</td>
<td>H - H</td>
<td>12,00</td>
<td>6,00</td>
<td>72,00</td>
</tr>
<tr>
<td>Operario</td>
<td>H - H</td>
<td>12,00</td>
<td>5,00</td>
<td>60,00</td>
</tr>
<tr>
<td>Peón</td>
<td>H - H</td>
<td>24,00</td>
<td>2,50</td>
<td>60,00</td>
</tr>
<tr>
<td><strong>MATERIALES</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aditivo Químico</td>
<td>Kgr</td>
<td>25,00</td>
<td>15,00</td>
<td>375,00</td>
</tr>
<tr>
<td>Grava &lt;1/2&quot; de O</td>
<td>M3</td>
<td>3,00</td>
<td>30,00</td>
<td>90,00</td>
</tr>
<tr>
<td><strong>EQUIPO</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Movilidad de apoyo</td>
<td>H - M</td>
<td>4,00</td>
<td>18,75</td>
<td>75,00</td>
</tr>
<tr>
<td>Herramientas Tecno, Tripode y otros</td>
<td>H - E</td>
<td>8,00</td>
<td>5,00</td>
<td>40,00</td>
</tr>
<tr>
<td>Compresora y Accesorios</td>
<td>H - M</td>
<td>9,00</td>
<td>100,00</td>
<td>900,00</td>
</tr>
<tr>
<td><strong>COSTO UNITARIO</strong></td>
<td></td>
<td></td>
<td></td>
<td><strong>1.672,00</strong></td>
</tr>
</tbody>
</table>

**PARTIDA**: Transporte de equipo de prueba de bombeo

Especificaciones: Traslado de equipo de prueba de un pozo a otro pozo.

Rendimiento: 01 Viaje / día

| Unidad: Equipo |

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO SI/ UNITARIO</th>
<th>TOTAL PARCIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MANO DE OBRA</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operario</td>
<td>H - H</td>
<td>8,00</td>
<td>5,00</td>
<td>40,00</td>
</tr>
<tr>
<td>Oficial</td>
<td>H - H</td>
<td>8,00</td>
<td>4,00</td>
<td>32,00</td>
</tr>
<tr>
<td>Peón</td>
<td>H - H</td>
<td>8,00</td>
<td>2,50</td>
<td>20,00</td>
</tr>
<tr>
<td><strong>EQUIPO</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Movilidad de apoyo</td>
<td>H - M</td>
<td>8,00</td>
<td>16,75</td>
<td>150,00</td>
</tr>
<tr>
<td>Herramientas Tecno, Tripode</td>
<td>H - E</td>
<td>8,00</td>
<td>5,00</td>
<td>40,00</td>
</tr>
<tr>
<td><strong>COSTO UNITARIO</strong></td>
<td></td>
<td></td>
<td></td>
<td><strong>282,00</strong></td>
</tr>
</tbody>
</table>
ANEXO Nº 02

ANÁLISIS DE COSTOS UNITARIOS

OBRAS: PROGRAMA DE REHABILITACIÓN, ELECTRIFICACIÓN Y EQUIPAMIENTO DE POZOS II ETAPA - VALLE ALTO PIURA

REHABILITACION Y DESARROLLO DE POZOS

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>Especificaciones</th>
<th>Rendimiento</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prueba de Bombeo</td>
<td>24 Hrs de Prueba+16 Hrs de Montaje y Desmontaje</td>
<td>Pozo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO UNITARIO</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MANO DE OBRA</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Técnico</td>
<td>H-H</td>
<td>24,00</td>
<td>6,00</td>
<td>144,00</td>
</tr>
<tr>
<td>Operario</td>
<td>H-H</td>
<td>16,00</td>
<td>5,00</td>
<td>80,00</td>
</tr>
<tr>
<td>Oficial</td>
<td>H-H</td>
<td>24,00</td>
<td>4,00</td>
<td>96,00</td>
</tr>
<tr>
<td>Peón</td>
<td>H-H</td>
<td>16,00</td>
<td>2,50</td>
<td>40,00</td>
</tr>
<tr>
<td><strong>MATERIALES</strong></td>
<td></td>
<td></td>
<td></td>
<td>357,10</td>
</tr>
<tr>
<td>Petróleo</td>
<td>Galon</td>
<td>36,00</td>
<td>9,60</td>
<td>345,60</td>
</tr>
<tr>
<td>Lubricante</td>
<td>Gif</td>
<td>0,50</td>
<td>23,00</td>
<td>11,50</td>
</tr>
<tr>
<td><strong>EQUIPO</strong></td>
<td></td>
<td></td>
<td></td>
<td>340,00</td>
</tr>
<tr>
<td>Equipo de Prueba de bombeo</td>
<td>H-M</td>
<td>24,00</td>
<td>10,00</td>
<td>240,00</td>
</tr>
<tr>
<td>Herramientas Técnica, Tripode</td>
<td>H-E</td>
<td>16,00</td>
<td>5,00</td>
<td>80,00</td>
</tr>
<tr>
<td>Contadores - Cubas</td>
<td>Gbl</td>
<td>1,00</td>
<td>20,00</td>
<td>20,00</td>
</tr>
<tr>
<td><strong>COSTO UNITARIO</strong></td>
<td></td>
<td></td>
<td></td>
<td>1,057,10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>Especificaciones</th>
<th>Rendimiento</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Instalación del Equipos - Existente o Definitivo.</td>
<td>Un equipo por día</td>
<td>Equipos</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO UNITARIO</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MANO DE OBRA</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Técnico</td>
<td>H-H</td>
<td>10,00</td>
<td>6,00</td>
<td>60,00</td>
</tr>
<tr>
<td>Operario</td>
<td>H-H</td>
<td>10,00</td>
<td>5,00</td>
<td>50,00</td>
</tr>
<tr>
<td>Oficial</td>
<td>H-H</td>
<td>10,00</td>
<td>4,00</td>
<td>40,00</td>
</tr>
<tr>
<td>Peón</td>
<td>H-H</td>
<td>20,00</td>
<td>2,50</td>
<td>50,00</td>
</tr>
<tr>
<td><strong>MATERIALES</strong></td>
<td></td>
<td></td>
<td></td>
<td>58,20</td>
</tr>
<tr>
<td>Petróleo</td>
<td>Galon</td>
<td>2,00</td>
<td>9,60</td>
<td>19,20</td>
</tr>
<tr>
<td>Grasa</td>
<td>Kgr</td>
<td>1,00</td>
<td>5,00</td>
<td>5,00</td>
</tr>
<tr>
<td><strong>EQUIPO</strong></td>
<td></td>
<td></td>
<td></td>
<td>125,00</td>
</tr>
<tr>
<td>Movilidad de apoyo</td>
<td>H-M</td>
<td>4,00</td>
<td>18,75</td>
<td>75,00</td>
</tr>
<tr>
<td>Herramientas, tretpe, trípode y otros</td>
<td>H-E</td>
<td>10,00</td>
<td>5,00</td>
<td>50,00</td>
</tr>
<tr>
<td><strong>COSTO UNITARIO</strong></td>
<td></td>
<td></td>
<td></td>
<td>383,20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>Especificaciones</th>
<th>Rendimiento</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Análisis Físico Químico - Muestra de Agua</td>
<td>01 Muestra / Pozo</td>
<td>Muestra</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO UNITARIO</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Tomada de Muestra y Análisis Físico Químico</strong></td>
<td>Muestra</td>
<td>1</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td><strong>COSTO UNITARIO</strong></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>
PROGRAMA DE REHABILITACIÓN, ELECTRIFICACIÓN Y EQUIPAMIENTO DE POZOS II ETAPA
VALLE - ALTO PIURA

ANÁLISIS DE COSTOS UNITARIOS - OBRAS CIVILES

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>Especificaciones</th>
<th>Rendimiento</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANO DE OBRA</td>
<td>Demolición de Base de Bomba</td>
<td>Destruir y eliminar desmonte de base existente por encontrarse en mal estado</td>
<td>1 base / 2 días</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO SI/UNITARIO</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oficial</td>
<td>H-H</td>
<td>16,00</td>
<td>4,00</td>
<td>64,00</td>
</tr>
<tr>
<td>Peón</td>
<td>H-H</td>
<td>32,00</td>
<td>2,50</td>
<td>80,00</td>
</tr>
<tr>
<td><strong>COSTO UNITARIO</strong></td>
<td></td>
<td></td>
<td></td>
<td><strong>144,00</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>Especificaciones:</th>
<th>Rendimiento</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANO DE OBRA</td>
<td>Excavación</td>
<td>Excavación de material suelto, forma cuadrada y circular</td>
<td>2.0 m³/día</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO SI/UNITARIO</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oficial (0.30)</td>
<td>H-H</td>
<td>1,20</td>
<td>4,00</td>
<td>4,80</td>
</tr>
<tr>
<td>Peón(1)</td>
<td>H-H</td>
<td>4,00</td>
<td>2,50</td>
<td>10,00</td>
</tr>
<tr>
<td>Desgaste de Herramientas</td>
<td>M3 %</td>
<td>0,05</td>
<td>14,8</td>
<td>0,74</td>
</tr>
<tr>
<td><strong>COSTO UNITARIO</strong></td>
<td></td>
<td></td>
<td></td>
<td><strong>16,54</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>Especificaciones:</th>
<th>Rendimiento</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANO DE OBRA</td>
<td>Relleno</td>
<td>Relleno compactado con material propio transportado desde 50 m manualmente.</td>
<td>2.0 m³/día</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO SI/UNITARIO</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oficial (0.30)</td>
<td>H-H</td>
<td>1,20</td>
<td>4,00</td>
<td>4,80</td>
</tr>
<tr>
<td>Peón(1)</td>
<td>H-H</td>
<td>4,00</td>
<td>2,50</td>
<td>10,00</td>
</tr>
<tr>
<td>Desgaste de Herramientas</td>
<td>MO %</td>
<td>0,05</td>
<td>14,8</td>
<td>0,74</td>
</tr>
<tr>
<td><strong>COSTO UNITARIO</strong></td>
<td></td>
<td></td>
<td></td>
<td><strong>16,54</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>Especificaciones</th>
<th>Rendimiento</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANO DE OBRA</td>
<td>Concreto Fe. = 175kg/cm² + 30% PM.</td>
<td>Para Cimentación de base bomba, de ante pozo o rol de ladrillo</td>
<td>7 m³/día</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO SI/UNITARIO</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capataz</td>
<td>H-H</td>
<td>1,14</td>
<td>6,00</td>
<td>6,66</td>
</tr>
<tr>
<td>Operarios</td>
<td>H-H</td>
<td>1,14</td>
<td>5,00</td>
<td>5,72</td>
</tr>
<tr>
<td>Oficial</td>
<td>H-H</td>
<td>1,14</td>
<td>4,00</td>
<td>4,57</td>
</tr>
<tr>
<td>Peón</td>
<td>H-H</td>
<td>6,86</td>
<td>2,50</td>
<td>17,14</td>
</tr>
<tr>
<td><strong>MATERIALES</strong></td>
<td></td>
<td></td>
<td></td>
<td><strong>34,29</strong></td>
</tr>
<tr>
<td>Arena gruesa</td>
<td>m³</td>
<td>0,50</td>
<td>25,00</td>
<td>12,50</td>
</tr>
<tr>
<td>Piedra Chacada</td>
<td>m³</td>
<td>0,55</td>
<td>30,00</td>
<td>16,50</td>
</tr>
<tr>
<td>Piedra mediana</td>
<td>m³</td>
<td>0,30</td>
<td>30</td>
<td>9,00</td>
</tr>
<tr>
<td>Cemento</td>
<td>Bolsa</td>
<td>7,50</td>
<td>20,00</td>
<td>150,00</td>
</tr>
<tr>
<td><strong>COSTO UNITARIO</strong></td>
<td></td>
<td></td>
<td></td>
<td><strong>222,29</strong></td>
</tr>
</tbody>
</table>
### PROGRAMA DE REHABILITACIÓN, ELECTRIFICACIÓN Y EQUIPAMIENTO DE POZOS II ETAPA

**VALLE - ALTO PIURA**

**ANEXO Nº 02**

**PROGRAMA DE REHABILITACIÓN, ELECTRIFICACIÓN Y EQUIPAMIENTO DE POZOS II ETAPA**

**VALLE - ALTO PIURA**

**ANALISIS DE COSTOS UNITARIOS - OBRAS CIVILES**

**PARTIDA**

<table>
<thead>
<tr>
<th>Especificaciones</th>
<th>Concreto Fe. = 175kg/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rendimiento</td>
<td>7 m³/día</td>
</tr>
<tr>
<td>Unidad</td>
<td>M3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO SI/UNITARIO PARCIAL</th>
</tr>
</thead>
</table>

#### MANO DE OBRA

- **Capataz**
  - H-H
  - 1,14
  - 6,00
  - 6,86
- **Operarios**
  - H-H
  - 1,14
  - 5,00
  - 5,72
- **Oficial**
  - H-H
  - 1,14
  - 4,00
  - 4,57
- **Pezón**
  - H-H
  - 11,43
  - 2,50
  - 28,68

#### MATERIALES

- **Arena gruesa**
  - m³
  - 0,50
  - 25,00
  - 12,50
- **Piedra chancada**
  - m³
  - 0,55
  - 30,00
  - 16,50
- **Cemento**
  - Bolsas
  - 6,50
  - 20,00
  - 170,00

**COSTO UNITARIO**

- 45,72

### PARTIDA

<table>
<thead>
<tr>
<th>Especificaciones</th>
<th>Concreto Fe. = 140kg/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rendimiento</td>
<td>7 m³/día</td>
</tr>
<tr>
<td>Unidad</td>
<td>M3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO SI/UNITARIO PARCIAL</th>
</tr>
</thead>
</table>

#### MANO DE OBRA

- **Capataz**
  - H-H
  - 1,14
  - 6,00
  - 6,86
- **Operarios**
  - H-H
  - 1,14
  - 5,00
  - 5,72
- **Oficial**
  - H-H
  - 1,14
  - 4,00
  - 4,57
- **Pezón**
  - H-H
  - 11,43
  - 2,50
  - 28,68

#### MATERIALES

- **Arena gruesa**
  - m³
  - 0,50
  - 25,00
  - 12,50
- **Piedra chancada**
  - m³
  - 0,55
  - 30,00
  - 16,50
- **Cemento**
  - Bolsas
  - 7,50
  - 20,00
  - 150,00

**COSTO UNITARIO**

- 199,00

### PARTIDA

<table>
<thead>
<tr>
<th>Especificaciones</th>
<th>Encofrado y Desencofrado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rendimiento</td>
<td>10 m²/día</td>
</tr>
<tr>
<td>Unidad</td>
<td>M3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO SI/UNITARIO PARCIAL</th>
</tr>
</thead>
</table>

#### MANO DE OBRA

- **Capataz**
  - H-H
  - 0,80
  - 6,00
  - 4,8
- **Oficial**
  - H-H
  - 0,80
  - 4,00
  - 3,2
- **Pezón(2)**
  - H-H
  - 1,6
  - 2,6
  - 4

#### MATERIALES

- **Madera tornillo**
  - P2
  - 4,00
  - 3,50
  - 14
- **Clavo**
  - Kgr.
  - 0,15
  - 3,50
  - 0,525

**COSTO UNITARIO**

- 26,63
PROGRAMA DE REHABILITACIÓN, ELECTRIFICACIÓN Y EQUIPAMIENTO DE POZOS II ETAPA
VALLE - ALTO PIURA

ANÁLISIS DE COSTOS UNITARIOS - OBRAS CIVILES

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>Terrajeo de Pared-Mortero 1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Especificaciones</td>
<td>Enlucido de paredes de canal y poza de disipación</td>
</tr>
<tr>
<td>Rendimiento</td>
<td>3 m²/día</td>
</tr>
<tr>
<td>Unidad</td>
<td>m²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO S/ UNITARIO</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MANO DE OBRA</strong></td>
<td></td>
<td></td>
<td></td>
<td>16,00</td>
</tr>
<tr>
<td>Capataz</td>
<td>H-H</td>
<td>0,67</td>
<td>6,00</td>
<td>4,00</td>
</tr>
<tr>
<td>Oficial</td>
<td>H-H</td>
<td>1,33</td>
<td>4,00</td>
<td>5,33</td>
</tr>
<tr>
<td>Peon (3)</td>
<td>H-H</td>
<td>2,67</td>
<td>2,50</td>
<td>6,67</td>
</tr>
<tr>
<td><strong>MATERIALES</strong></td>
<td></td>
<td></td>
<td></td>
<td>5,33</td>
</tr>
<tr>
<td>Arena Gruesa</td>
<td>m 3</td>
<td>0,03</td>
<td>25,00</td>
<td>0,75</td>
</tr>
<tr>
<td>Madera -Reglas</td>
<td>P2</td>
<td>0,45</td>
<td>3,50</td>
<td>1,58</td>
</tr>
<tr>
<td>Cemento</td>
<td>bolsa</td>
<td>0,15</td>
<td>20,00</td>
<td>3,00</td>
</tr>
<tr>
<td><strong>COSTO UNITARIO</strong></td>
<td></td>
<td></td>
<td></td>
<td>21,32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>Acero fy 4200 kg/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Especificaciones</td>
<td>Abilitación de fierro para poza de disipación</td>
</tr>
<tr>
<td>Rendimiento</td>
<td>100 kg x día</td>
</tr>
<tr>
<td>Unidad</td>
<td>kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO S/ UNITARIO</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MANO DE OBRA</strong></td>
<td></td>
<td></td>
<td></td>
<td>0,80</td>
</tr>
<tr>
<td>Capataz</td>
<td>H-H</td>
<td>0,08</td>
<td>6,00</td>
<td>0,48</td>
</tr>
<tr>
<td>Oficial</td>
<td>H-H</td>
<td>0,08</td>
<td>4,00</td>
<td>0,32</td>
</tr>
<tr>
<td><strong>MATERIALES</strong></td>
<td></td>
<td></td>
<td></td>
<td>2,88</td>
</tr>
<tr>
<td>Alambre Negro N° 16</td>
<td>kg</td>
<td>0,03</td>
<td>4,00</td>
<td>0,10</td>
</tr>
<tr>
<td>Fierro fy</td>
<td>kg</td>
<td>1,00</td>
<td>2,78</td>
<td>2,78</td>
</tr>
<tr>
<td><strong>COSTO UNITARIO</strong></td>
<td></td>
<td></td>
<td></td>
<td>3,68</td>
</tr>
</tbody>
</table>

Autoridad Nacional del Agua

Leyenda: Fortunato Ayala Sánchez
Ingeniero Agrónomo
Reg. CIF N° 17847
ANEXO N°02

PROGRAMA DE REHABILITACIÓN, ELECTRIFICACIÓN Y EQUIPAMIENTO DE POZOS II ETAPA
VALLE - ALTO PIURA

ANÁLISIS DE COSTOS UNITARIOS - OBRAS CIVILES

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>Especificaciones</th>
<th>Rendimiento</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adquisición de rieles de Apoyo de 4 - 5 m</td>
<td>Unidad</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO S/ UNITARIO</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATERIALES</td>
<td>Rieles de 5 m x 0.15 x 0.15(2)</td>
<td>m</td>
<td>1,00</td>
<td>50</td>
</tr>
<tr>
<td>COSTO UNITARIO</td>
<td></td>
<td></td>
<td></td>
<td>50.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>Especificaciones</th>
<th>Rendimiento</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Albañilería de Ladrillo - Cabeza</td>
<td>Unidad</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO S/ UNITARIO</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANO DE OBRA</td>
<td>Capataz</td>
<td>H-H</td>
<td>1,33</td>
<td>6.00</td>
</tr>
<tr>
<td></td>
<td>Oficial</td>
<td>H-H</td>
<td>2,66</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td>Peon (3)</td>
<td>H-H</td>
<td>2,66</td>
<td>2.50</td>
</tr>
<tr>
<td>MATERIALES</td>
<td>Arena Gruesa</td>
<td>m 3</td>
<td>0.10</td>
<td>25.00</td>
</tr>
<tr>
<td></td>
<td>Ladrillo cabeza 9x12x24</td>
<td>Unid.</td>
<td>50.00</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>Cemento</td>
<td>bolsa</td>
<td>0.41</td>
<td>10.00</td>
</tr>
<tr>
<td>COSTO UNITARIO</td>
<td></td>
<td></td>
<td></td>
<td>46.77</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>Especificaciones</th>
<th>Rendimiento</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Albañilería de Ladrillo - Soga</td>
<td>Unidad</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO S/ UNITARIO</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANO DE OBRA</td>
<td>Capataz</td>
<td>H-H</td>
<td>0.67</td>
<td>6.00</td>
</tr>
<tr>
<td></td>
<td>Oficial</td>
<td>H-H</td>
<td>1,33</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td>Peon (2)</td>
<td>H-H</td>
<td>2.67</td>
<td>2.50</td>
</tr>
<tr>
<td>MATERIALES</td>
<td>Arena Gruesa</td>
<td>m 3</td>
<td>0.08</td>
<td>25.00</td>
</tr>
<tr>
<td></td>
<td>Ladrillo cabeza 9x12x24</td>
<td>Unid.</td>
<td>50.00</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>Cemento</td>
<td>bolsa</td>
<td>0.30</td>
<td>10.00</td>
</tr>
<tr>
<td>COSTO UNITARIO</td>
<td></td>
<td></td>
<td></td>
<td>30.00</td>
</tr>
</tbody>
</table>
ANEXO Nº 02
PROGRAMA DE REHABILITACIÓN, ELECTRIFICACIÓN Y EQUIPAMIENTO DE POZOS
VALLE - ALTO PIURA

ANÁLISIS COSTOS UNITARIOS - TRABAJOS PRELIMINARES

ANÁLISIS DE COSTOS UNITARIOS -TRANSPORTE

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>Especificaciones</th>
<th>Rendimiento</th>
<th>Unidad</th>
<th>CONCEPTO</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO S/ UNITARIO</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Flete - Materiales de construcción</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Traslado de Materiales de Construcción hasta Obra.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kg</td>
<td>Kg</td>
<td>1</td>
<td>0,05</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>

COSTO UNITARIO

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>Especificaciones</th>
<th>Rendimiento</th>
<th>Unidad</th>
<th>CONCEPTO</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO S/ UNITARIO</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Transporte de equipo Lima - Chulucanas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cargúlo y Transporte de Equipo de bombeo al lugar solicitado</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Equipo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRANSPORTE DE EQUIPO DE BOMBEO Y ACCESORIOS DE LIMA - CHULUCANAS

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO S/ UNITARIO</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transporte de equipo de bombeo y accesorios de Lima - Chulucanas</td>
<td>Equipo</td>
<td>1</td>
<td>700,00</td>
<td>700,00</td>
</tr>
</tbody>
</table>

COSTO UNITARIO

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>Especificaciones</th>
<th>Rendimiento</th>
<th>Unidad</th>
<th>CONCEPTO</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO S/ UNITARIO</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Transporte de equipo de Almacén de Chulucanas - Pozo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Traslado del equipo de bombeo al lugar del pozo p' su instalación.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Equipo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRANSPORTE DE EQUIPO DE BOMBEO Y ACCESORIOS DE LIMA - CHULUCANAS

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO S/ UNITARIO</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transporte de equipo de bombeo y accesorios de Lima - Chulucanas</td>
<td>Equipo</td>
<td>1</td>
<td>150,00</td>
<td>150,00</td>
</tr>
</tbody>
</table>

COSTO UNITARIO

Expediente No. 17647
Ing. Agrónomo C.P.
POZA DE DISIPACION

AUTORIDAD NACIONAL DEL AGUA

MINISTERIO DE AGRICULTURA
INTENDENCIA DE RECURSOS HIDRICOS – INRENA
PROGRAMA DE REORGANIZACIÓN, ELECTRIFICACIÓN Y EQUIPAMIENTO DE POZOS – VALLE ALTO SJUAN

CONSTRUCCION DE POZA DE DISIPACION

Leocinto Fortunato Ayala Sinchez
Ingeniero Agronómico
Reg. CIP N° 17847

CORTES

PLANTA

CORTES

1/25