INFORME FINAL

LÍNEA BASE DE LOS PARÁMETROS DE EFICIENCIA DE ACUERDO AL PROCEDIMIENTO PROPUESTO POR LA AUTORIDAD NACIONAL DEL AGUA, VALIDANDO SU APLICACIÓN EN LOS SECTORES HIDRÁULICOS MAYOR Y MENOR UCHUSUMA ÁMBITO DE LA AAA CAPLINA OCOÑA, ALA TACNA

Edwin Martin Pino Vargas, Ph.D.
Personal Ejecutor (Locación de Servicios)

Agosto 2016
PRIMER PRODUCTO
“LÍNEA BASE DE LOS PARÁMETROS DE EFICIENCIA DE ACUERDO AL PROCEDIMIENTO PROPUESTO POR LA AUTORIDAD NACIONAL DEL AGUA, VALIDANDO SU APLICACIÓN EN LOS SECTORES HIDRÁULICOS MAYOR Y MENOR UCHUSUMA ÁMBITO DE LA AAA CAPLINA OCOÑA, ALA TACNA”

Julio 2016
TABLA DE CONTENIDO

1. INTRODUCCION

1.1. Antecedentes ... 6
1.2. Justificación .. 7
1.3. Objetivo .. 7
1.4. Metas del Producto .. 7
1.5. Base Legal .. 8
1.6. Recopilación de información básica .. 8
1.7. Ubicación de la zona de estudio ... 9

2. ESTADO SITUACIONAL DE LA RED HIDROMETRICA 10

2.1. Reseña General .. 10
2.2. Cuencas en la Región Tacna .. 11
2.3. Sistema Hidráulico Uchusuma .. 11
 2.3.1. Sistema Hidráulico Mayor Alto Uchusuma 12
 2.3.2. Sistema Hidráulico Menor Bajo Uchusuma 14
 2.3.3. Sistema Hidráulico Aguas Subterráneas Clase B El Ayro 14
2.4. Información Disponible ... 15
 2.4.1. Estaciones Meteorológicas ... 15
 2.4.2. Estaciones Hidrométricas ... 16
2.5. Estaciones Hidrométricas ... 25
2.6. Evaluación de las Estaciones Hidrométricas 28
 2.6.1. Sistema Hidráulico Mayor Alto Uchusuma 28
 2.6.2. Sistema Hidráulico Menor Bajo Uchusuma 48
 2.6.3. Sistema Hidráulico Clase B Aguas Subterráneas El Ayro 49

3. INFORMACION DE LOS PROCEDIMIENTOS DE PLANIFICACION 53

4. PROPUESTA DE MEJORAS EN LA RED DE ESTACIONES 55

4.1. Sistema Hidráulico Mayor Alto Uchusuma 55
4.2. Sistema Hidráulico Menor Bajo Uchusuma.................................56
4.3. Sistema Hidráulico Clase B Aguas Subterráneas El Ayro...........58

5. ANEXOS..60
LISTA DE FIGURAS

Figura No. 1-1 Unidades Hidrográficas Región Tacna ... 9
Figura No. 2-1 Comparativo de Descargas Medias Ríos Costa del Perú 10
Figura No. 2-2 Ubicación de Cuencas en la Región Tacna ... 11
Figura No. 2-3 Esquema Hidráulico Sector Uchusuma Alto 13
Figura No. 2-4 Red de Estaciones Automáticas Tacna .. 20
Figura No. 2-5 Sensores instalados en las estaciones automáticas EHA y EMA 21
Figura No. 2-6 Estaciones Hidrométricas Automáticas .. 22
Figura No. 2-7 Estaciones Meteorológicas Automáticas ... 22
Figura No. 2-8 Monitoreo Satelital de Estaciones Automáticas 23
Figura No. 2-9 Estaciones Automáticas Cuenca Locumba 24
Figura No. 2-10 Estaciones Automáticas Cuenca Sama ... 24
Figura No. 2-11 Estaciones Automáticas Cuenca Caplina-Uchusuma 25
Figura No. 2-12 Estaciones Automáticas Cuenca Maure .. 25
Figura No. 2-13 Sistema TDPS ... 26
Figura No. 2-14 Curva de Calibración Estación Canal Queñuta 31
Figura No. 2-15 Curva de Calibración Estación Hidrométrica Canal Uncalluta 32
Figura No. 2-16 Curva de Calibración Estación Hidrométrica Bocatoma Uchusuma 34
Figura No. 2-17 Curva de Calibración Estación Hidrométrica Canal Patapujo 35
Figura No. 2-18 Curva Altura-Area-Volumen Estación Limnimétrica Represa Casiri ... 37
Figura No. 2-19 Curva Altura-Area-Volumen Estación Limnimétrica Represa Paurani ... 38
Figura No. 2-20 Curva de Calibración Estación Salida Represa Paucarani 40
Figura No. 2-21 Ubicación Estación Piedras Blancas ... 41
Figura No. 2-22 Estación Piedras Blancas .. 42
Figura No. 2-23 Lectura de Mira (16/06/2016) ... 42
Figura No. 2-24 Curva de Calibración Estación Hidrométrica Piedras Blancas 44
Figura No. 2-25 Curva Calibración Estación Hidrométrica Piedras Blancas Uso Poblacional .. 46
Figura No. 2-26 Curva Calibración Estación Hidrométrica Piedras Blancas Uso Agrícola ... 48
Figura No. 2-29 Fotografía del Pozo PA-13 .. 50
Figura No. 2-30 Fotografía del Pozo PA-6 ... 51
Figura No. 2-31 Fotografía del Pozo PA-9 ... 51
Figura No. 2-32 Fotografía Pozo PA-16 .. 52
LISTA DE TABLAS

Tabla No. 2-1 Estaciones de Descargas Cuenca Uchusuma 27
Tabla No. 2-2 Estaciones de Descargas de la Cuenca Maure.................................. 28
Tabla No. 2-3 Características Estación Hidrométrica Canal Queñuta 29
Tabla No. 2-4 Aforos Estación Limnimétrica Canal Queñuta 30
Tabla No. 2-5 Características Estación Hidrométrica Canal Uncalluta 31
Tabla No. 2-6 Estación Estación Hidrométrica Canal Uncalluta 32
Tabla No. 2-7 Características Estación Hidrométrica Bocatoma Uchusuma 33
Tabla No. 2-8 Aforos Estación Hidrométrica Bocatoma Uchusuma 33
Tabla No. 2-9 Características Estación Hidrométrica Canal Patapujo 34
Tabla No. 2-10 Aforos Estación Hidrométrica Canal Patapujo 35
Tabla No. 2-11 Características Estación Puente Uchusuma .. 36
Tabla No. 2-12 Características Estación Limnimétrica Represa Casiri 37
Tabla No. 2-13 Estación Limnimétrica Represa Paucarani ... 38
Tabla No. 2-14 Características Estación Hidrométrica Salida Represa Paucarani 39
Tabla No. 2-15 Aforos Estación Limnimétrica Salida Represa Paucarani 40
Tabla No. 2-16 Estación Hidrométrica Piedras Blancas ... 43
Tabla No. 2-17 Aforos Estación Hidrométrica Piedras Blancas 43
Tabla No. 2-18 Características Estación Hidrométrica Piedras Blancas Uso Poblacional 45
Tabla No. 2-19 Aforos Estación Hidrométrica Piedras Blancas Uso Poblacional 45
Tabla No. 2-20 Características Estación Hidrométrica Piedras Blancas Uso Agrícola .. 47
Tabla No. 2-21 Aforos Estación Hidrométrica Piedras Blancas Uso Agrícola 47
Tabla No. 2-22 Características Hidráulicas de los Laterales 49
Tabla No. 3-1 Información de rol de riego .. 54
Tabla No. 2-23 Propuesta de Estaciones Hidrométricas en laterales bloque Uchusuma.58
1. INTRODUCCION

1.1. Antecedentes

La Autoridad Nacional del Agua fue creada al amparo de la primera Disposición Complementaria Final de la Ley de Organización y Funciones del Ministerio de Agricultura, aprobada mediante Decreto Legislativo N° 997, como Organismo Público adscrito al Ministerio de Agricultura responsable de dictar normas y establecer procedimientos para la gestión integrada y sostenible de los recursos hídricos. Tiene personería jurídica de derecho público interno y constituye un pliego presupuestal.

La Autoridad Nacional del Agua es el ente rector y la máxima autoridad técnico-normativa del Sistema Nacional de Gestión de los Recursos Hídricos. Es responsable del funcionamiento de dicho sistema en el marco de la Ley N° 29338 – Ley de Recursos Hídricos.

La indicada norma establece que la gestión integrada de los recursos hídricos se sustenta en su aprovechamiento eficiente y su conservación, incentivando el desarrollo de una cultura de uso eficiente entre los usuarios y operadores estableciendo que los titulares de derecho de uso tengan como una de sus obligaciones utilizar el agua con la mayor eficiencia técnica y económica.

De acuerdo al Reglamento de Organización y Funciones de la Autoridad Nacional del Agua corresponde a la Dirección de Administración de Recursos Hídricos, elaborar, proponer y supervisar la implementación de normas en materia de distribución multisectorial y establecimiento de parámetros de eficiencia.

La Dirección de Administración de Recursos Hídricos, ha elaborado una propuesta de norma “Lineamientos para la determinación y establecimiento de los parámetros de eficiencia”, en la que se establecen los procedimientos para determinar y establecer los parámetros de eficiencia para los operadores de infraestructura hidráulica y usuarios de agua.
1.2. Justificación

La Ley de Recursos Hídricos, establece el principio de eficiencia, el cual establece que la gestión integrada de los recursos hídricos se sustenta en el aprovechamiento eficiente y su conservación, incentivando el desarrollo de una cultura de uso eficiente entre los usuarios y operadores.

El Reglamento de la Ley de Recursos Hídricos, en el Capítulo IX, De los Parámetros de Eficiencia para el Aprovechamiento del Recurso Hídrico, establece que los Parámetros de Eficiencia para el Aprovechamiento de los Recursos Hídricos, son los valores necesarios que la Autoridad Nacional del Agua deberá establecer para determinar de forma objetiva, si los usuarios de agua y los operadores de infraestructura hidráulica, hacen uso eficiente del recurso hídrico. Los criterios a considerar para el establecimiento y evaluación de los Parámetros de Eficiencia son determinados por la Autoridad Nacional del Agua.

En base a la propuesta de norma elaborada “Lineamientos para la determinación y establecimiento de los parámetros de eficiencia”, es necesario validar su aplicabilidad, por lo que de acuerdo al procedimiento establecido debe determinarse la línea de base de los parámetros de eficiencia de distintos sectores hidráulicos en forma representativa en la zona sur, norte y centro del país.

1.3. Objetivo

Determinar la línea base de los parámetros de eficiencia de acuerdo al procedimiento propuesto por la Autoridad Nacional del Agua validando su aplicación en los sectores hidráulicos mayor y menor Uchusuma ámbito de la AAA Caplina Ocoña, ALA Tacna.

1.4. Metas del Producto

i) Estado situacional de la red hidrométrica de captación y distribución en los sectores y subsectores hidráulicos señalados para la aplicación de los parámetros de eficiencia.
ii) Información de los procedimientos de planificación y distribución de las aguas, en los sectores hidráulicos y subsectores hidráulicos señalados, como fuente de información para el cálculo de los parámetros de eficiencia.

iii) Propuesta de la red hidrométrica de captación y distribución del sector hidráulico mayor y menor.

1.5. Base Legal

La base legal para la elaboración del presente trabajo se basa en:

- Resolución Jefatural N° 107-2016-ANA, 02 de mayo 2016. Dispone la pre-publicación del documento denominado “Lineamientos para Determinar y Establecer los Parámetros de Eficiencia para el Aprovechamiento de los Recursos Hídricos”.

1.6. Recopilación de información básica

Para efectos de desarrollo del presente trabajo se tomó en cuenta las siguientes instituciones como fuentes de información:

- Autoridad Local de Agua Caplina Locumba
- Dirección Regional del Servicio Nacional de Meteorología e Hidrografía (SENAMHI).
- Dirección Regional de Agricultura Tacna.
- Gobierno Regional de Tacna. Proyecto Especial Afianzamiento y Ampliación de los Recursos Hídricos de Tacna.
- Junta de Usuarios Tacna.
- Empresa Prestadora de Servicios Tacna.

1.7. **Ubicación de la zona de estudio**

La zona de estudio se encuentra ubicada al sur del país, administrativamente pertenece a la AAA Caplina – Ocoña y ALA Tacna. En la Figura No. 1-1, se muestra la ubicación de la zona de estudio.

![Figura No. 1-1 Unidades Hidrográficas Región Tacna](image-url)
2. ESTADO SITUACIONAL DE LA RED HIDROMÉTRICA

2.1. Reseña General

La complejidad geográfica del territorio peruano y en forma específica la región Tacna, exige que el hombre deba aprender a dominar sus relaciones con el hábitat que lo sustenta. Dicho aprendizaje implica la adecuación permanente a las exigencias de preservar lo que existe y de aprovechar racionalmente las ventajas que el medio ofrece, evitando, por lo tanto, la utilización irreversible de la tierra, agua, bosques y praderas.

La región Tacna, por naturaleza es deficitaria en disponibilidades hídricas tanto superficiales como subterráneas, tal como lo demuestra la Figura No. 1.

![Figura No. 2-1 Comparativo de Descargas Medias Ríos Costa del Perú](image)

La Figura No. 1, muestra la relación de magnitudes de descargas que hay entre los ríos de la costa norte y sur del país, solo desde el punto de vista de descargas medias. Puede verse la reducida magnitud de las descargas de los
ríos Locumba, Sama y Caplina respecto por ejemplo a los ríos Santa, Tumbes y Chira. El sistema Alto y Bajo Uchusuma no es ajeno a esta realidad.

La oferta hídrica de las cuencas de Tacna está constituidas por recursos hídricos superficiales provenientes de las precipitaciones y deshielos ocurridos en la cordillera del barroso y también por el trasvase del agua de la zona altiplánica, propiamente de la cuenca Maure.

2.2. Cuencas en la Región Tacna

En la región Tacna contamos con 4 cuencas principales, Caplina, Sama y Locumba en la vertiente del Pacífico, Maure en la vertiente del Titicaca. En la Figura No. 2, se muestra la delimitación y ubicación de dichas cuencas.

![Figura No. 2-2 Ubicación de Cuencas en la Región Tacna](image)

2.3. Sistema Hidráulico Uchusuma

El sistema hidráulico Uchusuma, se divide en tres sectores establecidos por Resoluciones Directoriales del ANA de la siguiente manera: Resolución Directoral

2.3.1. Sistema Hidráulico Mayor Alto Uchusuma

La Autoridad Nacional del Agua, vía acto resolutivo indicado en el párrafo anterior establece el ámbito y límites del sector hidráulico Mayor Clase C Alto Uchusuma de la siguiente manera:

- Nombre del Sector Hidráulico: Sector Hidráulico Mayor Clase C Alto Uchusuma.
- Clase del Sector Hidráulico: Sector Hidráulico Mayor Clase C.
- Ubicación Administrativa: AAA I Caplina – Ocoña, ALA Tacna
- Ubicación Hidrográfica: Vertiente Hidrográfica del Titicaca y del Pacífico, Unidad Hidrográfica 014 Maure – Unidad Hidrográfica 13155 Intercuenca.
- Ubicación Política: Región Tacna, Provincia Tacna, Distritos Capazo, Palca, Pachía, Calana, Pocollay y Tacna.

Este sector comprende desde las nacientes y afluentes trasvasadas de la unidad hidrográfica 014 Maure hasta el partidor Cerro Blanco, donde el agua es distribuida tanto para la población como para el uso agrícola.

En este sistema se dispone de un conjunto de captaciones directas del río superficial las cuales son: Chungara (Bocatoma Chungara), Iñuma (Bocatoma Iñuma), Casillaco (Bocatoma Casillaco), Queñuta (Bocatoma Queñuta), Uchusuma (Bocatoma Uchusuma), Vilavilani (Bocatoma Chuschuco), Vilavilani (Bocatoma Angostura Grande), Vilavilani (Bocatoma Angostura Chica), Vilavilani (Bocatoma Palcota), Vilavilani (Bocatoma Moruyo), Vilavilani (Bocatoma Cocane), Vilavilani (Bocatoma Hacienda), Vilavilani (Bocatoma Mina Serena).

En relación a las obras de almacenamiento tenemos: Represa Casiri (Tierra), Represa Condorpico (Tierra), Represa Paucarani (Tierra), Reservorio Piedras
Blancas R1 (Geomembrana), Reservorio Piedras Blancas R2 (Geomembrana), Reservorio Piedras Blancas R3 (Geomembrana).

Con relación a los canales de trasvase: Canales Queñuta, Patapujo, Calachaca-Chuapalca-Patapujo Tramo II, Uchusuma Alto, Uchusuma Bajo, Uncalluta, Calachaca-Chuapalca-Patapujo Tramo II (túneles), Uchusuma Alto (túneles).

Finalmente se tiene el canal de derivación Uchusuma-Magollo. En la Figura No. 2-3 se muestra en esquema hidráulico del sistema Uchusuma Alto.

![Esquema Hidráulico Sector Uchusuma Alto](image-url)
2.3.2. **Sistema Hidráulico Menor Bajo Uchusuma**

De la misma manera la Autoridad Nacional del Agua, vía acto resolutivo indicado establece el ámbito y límites del sector hidráulico Menor Clase C Bajo Uchusuma de la siguiente manera:

- **Nombre del Sector Hidráulico**: Sector Hidráulico Menor Clase C Bajo Uchusuma.
- **Clase del Sector Hidráulico**: Sector Hidráulico Menor Clase C.
- **Ubicación Administrativa**: AAA I Caplina – Ocoña, ALA Tacna.
- **Ubicación Hidrográfica**: Vertiente Hidrográfica Pacífico – Unidad Hidrográfica Caplina, 13155 Intercuenca.
- **Ubicación Política**: Región Tacna, Provincia Tacna, Distritos, Calana, Pocollay y Tacna.

Este sector comprende el canal de derivación Uchusuma-Magollo.

2.3.3. **Sistema Hidráulico Aguas Subterráneas Clase B El Ayro**

La Autoridad Nacional del Agua, también vía acto resolutivo indicado establece el ámbito y límites del sector hidráulico Aguas Subterráneas Clase B El Ayro de la siguiente manera:

- **Nombre del Sector Hidráulico**: Sector Hidráulico Aguas Subterráneas Clase B El Ayro.
- **Clase del Sector Hidráulico**: Sector Hidráulico De Aguas Subterráneas Clase B.
- **Ubicación Administrativa**: AAA I Caplina – Ocoña, ALA Tacna.
- **Ubicación Hidrográfica**: Vertiente Hidrográfica Titicaca – Unidad Hidrográfica 0148 Uchusuma.
- **Ubicación Política**: Región Tacna, Provincia Tacna, Distrito Palca.
Este acuífero se encuentra ubicado en la cuenca del río Uchusuma en territorio de las comunidades campesinas Ancomarca, Alto Perú y Talabaya.

Comprende los pozos PA-01, PA-04, PA-06, PA-09, PA-10, PA-12, PA.13 y PA-14.

2.4. Información Disponible

En la región Tacna y en especial sus cuencas, cuentan con una serie de estaciones hidrometeorológicas, las mismas que presentan registros históricos de diferente longitud. En el Anexo No. 1, se muestran el listado de las estaciones hidrometeorológicas de la región Tacna, detallando la cuenca en la que se ubican, variable hidrometeorológica, código, nombre de la estación, coordenadas UTM, altitud, periodo de registro y fuente.

En Tacna existen tres tipos de estaciones de medición de parámetros relacionados con los recursos hídricos: estaciones meteorológicas, estaciones hidrométricas y estaciones de control de la calidad.

2.4.1. Estaciones Meteorológicas

En lo que respecta a la red meteorológica esta es propiedad del SENAMHI a nivel nacional, dicha institución hace esfuerzos notables orientados a la mejora continua de su red de estaciones, centrándose en tres objetivos:

- Actualización de tecnologías, adaptando la elección del instrumental más adecuado según las condiciones climáticas específicas de cada estación.

- Automatización de la toma de datos mediante estaciones con sensores automáticos y envío a través de sistemas de radio-frecuencia o satelitales hacia puntos de control operativos. De esta manera se obtienen registros en tiempo real y con continuidad temporal gestionados de forma centralizada.

- Mantenimiento de la infraestructura y seguimiento de estaciones por parte de personal capacitado y distribuido a lo largo del territorio.
A pesar de los esfuerzos realizados y de las previsiones futuras de mejora del número de estaciones y de su automatización (mediante convenios con otros organismos públicos), existen evidentes debilidades en el sistema actual, en concreto:

- En el departamento de Tacna existían tres estaciones meteorológicas automáticas, lo que supone el 6,7% del total de estaciones propiedad del SENAMHI. A partir del año 2015 se tiene un total de 17 estaciones automáticas operativas, de las cuales 5 son meteorológicas y 12 son hidrométricas.

- La densidad de estaciones en Tacna es baja teniendo en cuenta la superficie del territorio (16 076 Km2), calculándose en 360 Km2 por cada estación.

- Existe un alto déficit instrumental de la red de estaciones, lo cual no permite monitorear todas las variables que intervienen en la definición del clima y en el ciclo del recurso hídrico.

- Sólo 2 de las 45 estaciones convencionales cuenta con comunicación vía radio HF, con lo que la conectividad es claramente deficitaria en el conjunto de estaciones.

- Existe una grave discontinuidad en el mantenimiento de las estaciones convencionales, por restricciones presupuestarias y falta de una organización territorial más eficiente.

- La mayor parte de estaciones padecen de elevada vulnerabilidad ante acciones de vandalismo y robo. Los sistemas de seguridad implantados no resultan suficientes en muchos casos, con la consiguiente pérdida económica.

2.4.2. Estaciones Hidrométricas

Dentro de este sub-apartado se encuentran las estaciones de medición del PET, del SENAMHI, de la DRSA (hasta aquí entes públicos), de SPCC y MINSUR (empresas privadas dedicadas a la minería).

Es destacable la proliferación de estaciones de medición de caudales en cursos fluviales acontecida en los últimos treinta años. En general esta progresión de
nuevos puntos de medida ha sido impulsada por la necesidad de caracterizar la oferta de recurso hídrico en unos sistemas muy frágiles en cuanto a garantías de disponibilidad de agua. El Proyecto Especial Tacna (PET) ha liderado este reciente interés en la cuantificación de la oferta hídrica de las cuencas con la finalidad de sustentar un buen número de proyectos de trasvase de recurso entre cuencas.

Los caudales de los ríos principales de las cuencas de Tacna son en general de bajos a muy bajos, situándose su moda entre 0,1 m3/s y 5 m3/s. En momentos de avenidas estos caudales pueden llegar a valores próximos a 50 m3/s y eventualmente superarlos, especialmente en las cuencas altas y medias del Sama y el Locumba (en menor proporción en la cuenca del Caplina y Maure-Uchusuma).

La extrema escasez junto con la fuerte variabilidad de caudales fluviales supone una mayor dificultad en la medición en campo, ya que las estaciones hidrométricas deben de estar diseñadas para alcanzar precisiones elevadas (en momentos de bajos caudales) y también adaptarse al funcionamiento en situaciones hídricas muy contrastadas (con variaciones en el caudal de un orden de magnitud).

Otra dificultad en la medición de caudales es sin duda la fuerte carga de sedimentos que transportan los cursos fluviales de las cuencas de Tacna. Los factores causantes de este proceso son las fuertes pendientes existentes, la elevada meteorización consecuencia de una climatología contrastada y la escasa vegetación que beneficia la erosión y arrastre de material. Los sedimentos producen que los lechos fluviales sean extremadamente móviles en cuanto a sección (transversalmente) y en planta (longitudinalmente). La estaciones hidrométricas, pues, deben tener mecanismos de afianzamiento del lecho fluvial y requerirán de un mantenimiento periódico después de cada periodo de avenidas.

De las visitas realizadas a estaciones de medición de caudales y de la experiencia aportada en proyectos y estudios se evalúa el estado infraestructural teniendo en cuenta los siguientes aspectos:
Las estaciones hidrométricas propiedad del SENAMHI se encuentran en un elevado porcentaje de casos en estado de abandono. El mantenimiento es claramente deficiente. Los instrumentos de medición son antiguos y no se calibran con la periodicidad deseable. Los hidromensores carecen de una buena capacitación en los aspectos más importantes relacionados con la calidad de las medidas.

Las estaciones hidrométricas del PET se sitúan en muchos casos sobre canales artificiales, lo cual facilita en gran medida la estabilidad de la sección de medición y la bondad del dato resultante. En estos casos el mantenimiento es continuo y adecuado.

Las estaciones hidrométricas del DRSA aprovechan en general estructuras preexistentes en los cauces fluviales que estabilizan la sección de medición (es el caso de bocatomas o puentes con estructuras rígidas). Se desconoce la calidad de los instrumentales de medición y la capacitación del personal desplazado a campo.

Las estaciones hidrométricas de la empresa SPCC disponen de secciones de medición rígidas y múltiples diseñadas para medición de caudales variables (según la época del año), el mantenimiento del instrumental es adecuado y la limpieza de los cauces se realiza de forma continua lo que favorece la estabilidad de la sección de medida y su correcta calibración. La capacitación de sus técnicos es adecuada para los fines perseguidos.

De forma conjunta, la valoración global de todas las estaciones existentes arroja las siguientes conclusiones:

Se realizan casi nulos esfuerzos por elaborar e implementar manuales de operación y mantenimiento de las estaciones de medición, que ha devenido en su deterioro y obsolescencia

Se descuida la capacitación periódica y la motivación del personal, ocasionando exclusión involuntaria o abandono de los operadores de las estaciones de medición.
En general la densidad de estaciones de medición es baja e inadecuada para poder caracterizar correctamente los cursos fluviales, dada la naturaleza de las cuencas de Tacna.

En general la precisión de las medidas actuales se encuentran muy lejos de la exigible tratándose de cursos con caudales exiguos.

En un reciente convenio entre el SENAMHI y el PMGRH promovido por el BID (Banco Interamericano de Desarrollo) se han construido un total de 12 nuevas estaciones hidrológicas automatizadas en las cuencas de Tacna.

En la Figura No. 2-4, se muestra la red de estaciones automáticas en la región Tacna, las mismas que son catalogadas como EHA y EMA, correspondiendo a Estación Hidrométrica Automática y Estación Meteorológica Automática.

En la Figura No. 2-5, se muestra los tipos de sensores instalados en dichas estaciones.
Figura No. 2-4 Red de Estaciones Automáticas Tacna
Se cuenta actualmente con 12 estaciones hidrométricas automáticas, las cuales se muestran en la Figura No. 2-6.
En la Figura No. 2-7, se muestran las 5 estaciones meteorológicas automáticas.

El monitoreo de estas estaciones automáticas se realiza vía satelital y centralizando la información en un nodo en la central SENAMHI Tacna. En la
Figura No. 2-8, se muestra un esquema del sistema de monitoreo satelital existente.

Figura No. 2-8 Monitoreo Satelital de Estaciones Automáticas

Asimismo, es preciso indicar que este sistema automatizado ha sido distribuido en toda la región Tacna, existiendo estaciones en punto estratégicos en las cuencas Locumba, Sama, Caplina-Uchusuma y Maure. Ver Figuras No. 2-9 a 2-12.
Figura No. 2-9 Estaciones Automáticas Cuenca Locumba

Figura No. 2-10 Estaciones Automáticas Cuenca Sama
2.5. Estaciones Hidrométricas

Para poder administrar los recursos hídricos superficiales en las cuencas de la región Tacna, debemos identificar las estaciones hidrométricas de descargas.
Esta información es muy importante para poder aplicar la metodología propuesta por ANA para evaluar eficiencias.

El sistema hidráulico mayor Uchusuma abarca parte de la cuenca Maure, la misma que se ubica en la zona alto andina, de características diferentes a las cuencas de la vertiente del pacífico, es una cuenca de curso internacional y forma parte del sistema Titicaca, Desaguadero, Lago Poopo y Salar de Coipasa (TDPS, Ver Figura No. 2-13), involucra tres países: Perú, Chile y Bolivia la misma que tiene una superficie aproximada de 9 800 km² de los cuales la mayor superficie se encuentra en territorio Boliviano 75%, en territorio Peruano 17% y en territorio Chileno 8%.

![Mapa de los sistemas de cuencas](image.png)

Figura No. 2-13 Sistema TDPS

En la Tabla No. 2-1, se muestran las estaciones descargas en la cuenca Uchusuma y en Tabla No. 2-2 las de la cuenca Maure.
<table>
<thead>
<tr>
<th>NÚMERO</th>
<th>Cuenca</th>
<th>Variable hidrológica</th>
<th>Código</th>
<th>ESTACIÓN</th>
<th>ESTE</th>
<th>NORTE</th>
<th>ALTITUD</th>
<th>PERIODO DE REGISTRO</th>
<th>FUENTE</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>UCHUSUMA</td>
<td>DESCARGAS MEDIAS</td>
<td>19131111A</td>
<td>PARTIDOR USO POBLACIONAL</td>
<td>375068</td>
<td>8012201</td>
<td>620</td>
<td>2006-2015</td>
<td>PET</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>UCHUSUMA</td>
<td>DESCARGAS MEDIAS</td>
<td>19131111B</td>
<td>PARTIDOR USO AGRICOLA</td>
<td>375064</td>
<td>8012206</td>
<td>620</td>
<td>2006-2015</td>
<td>PET</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>UCHUSUMA</td>
<td>DESCARGAS MEDIAS</td>
<td>19131111</td>
<td>PIEDRAS BLANCAS</td>
<td>377977</td>
<td>8012911</td>
<td>620</td>
<td>1939-1998, MINAG.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>UCHUSUMA</td>
<td>DESCARGAS MEDIAS</td>
<td>19131115</td>
<td>PTE.UCHUSUMA</td>
<td>433524</td>
<td>8016910</td>
<td>4270</td>
<td>1991 - 2015</td>
<td>PET</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>UCHUSUMA</td>
<td>DESCARGAS MEDIAS</td>
<td>19131116</td>
<td>PATAPUJO</td>
<td>433084</td>
<td>8029251</td>
<td>4418</td>
<td>1991 - 2015</td>
<td>PET</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>UCHUSUMA</td>
<td>DESCARGAS MEDIAS</td>
<td>19131117</td>
<td>BCA.UCHUSUMA</td>
<td>432587</td>
<td>8068890</td>
<td>4260</td>
<td>1963 - 1988, MINAG.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>UCHUSUMA</td>
<td>DESCARGAS MEDIAS</td>
<td>19131118</td>
<td>SALIDA REPRESA PAUCARANI</td>
<td>418567</td>
<td>8061191</td>
<td>4553</td>
<td>2001 - 2015</td>
<td>PET</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>UCHUSUMA</td>
<td>DESCARGAS MEDIAS</td>
<td>19131121A</td>
<td>PARTIDOR USO POBLACIONAL</td>
<td>375068</td>
<td>8012206</td>
<td>620</td>
<td>2006-2015</td>
<td>PET</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>UCHUSUMA</td>
<td>DESCARGAS MEDIAS</td>
<td>19131121B</td>
<td>PARTIDOR USO AGRICOLA</td>
<td>375064</td>
<td>8012206</td>
<td>620</td>
<td>2006-2015</td>
<td>PET</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>UCHUSUMA</td>
<td>DESCARGAS MEDIAS</td>
<td>19131121</td>
<td>PIEDRAS BLANCAS</td>
<td>377977</td>
<td>8012391</td>
<td>501</td>
<td>1939-1998, MINAG.</td>
<td>PET</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>UCHUSUMA</td>
<td>DESCARGAS MEDIAS</td>
<td>19131125</td>
<td>PTE.UCHUSUMA</td>
<td>433524</td>
<td>8016910</td>
<td>4270</td>
<td>1991 - 2015</td>
<td>PET</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>UCHUSUMA</td>
<td>DESCARGAS MEDIAS</td>
<td>19131126</td>
<td>PATAPUJO</td>
<td>433084</td>
<td>8029251</td>
<td>4418</td>
<td>1991 - 2015</td>
<td>PET</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>UCHUSUMA</td>
<td>DESCARGAS MEDIAS</td>
<td>19131127</td>
<td>BCA.UCHUSUMA</td>
<td>432587</td>
<td>8068890</td>
<td>4260</td>
<td>1991 - 2015</td>
<td>PET</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>UCHUSUMA</td>
<td>DESCARGAS MEDIAS</td>
<td>19131128</td>
<td>SALIDA REPRESA PAUCARANI</td>
<td>418567</td>
<td>8061191</td>
<td>4553</td>
<td>2012 - 2015</td>
<td>PET</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>UCHUSUMA</td>
<td>DESCARGAS MEDIAS</td>
<td>19131131A</td>
<td>PARTIDOR USO POBLACIONAL</td>
<td>375068</td>
<td>8012206</td>
<td>620</td>
<td>2006-2015</td>
<td>PET</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>UCHUSUMA</td>
<td>DESCARGAS MEDIAS</td>
<td>19131131B</td>
<td>PARTIDOR USO AGRICOLA</td>
<td>375064</td>
<td>8012206</td>
<td>620</td>
<td>2006-2015</td>
<td>PET</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>UCHUSUMA</td>
<td>DESCARGAS MEDIAS</td>
<td>19131131</td>
<td>PIEDRAS BLANCAS</td>
<td>377977</td>
<td>8012391</td>
<td>501</td>
<td>1939-1998, MINAG.</td>
<td>PET</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>UCHUSUMA</td>
<td>DESCARGAS MEDIAS</td>
<td>19131135</td>
<td>PTE.UCHUSUMA</td>
<td>433524</td>
<td>8016910</td>
<td>4270</td>
<td>1991 - 2015</td>
<td>PET</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>UCHUSUMA</td>
<td>DESCARGAS MEDIAS</td>
<td>19131136</td>
<td>PATAPUJO</td>
<td>433084</td>
<td>8029251</td>
<td>4418</td>
<td>1991 - 2015</td>
<td>PET</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>UCHUSUMA</td>
<td>DESCARGAS MEDIAS</td>
<td>19131137</td>
<td>BCA.UCHUSUMA</td>
<td>432587</td>
<td>8068890</td>
<td>4260</td>
<td>1991 - 2015</td>
<td>PET</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>UCHUSUMA</td>
<td>DESCARGAS MEDIAS</td>
<td>19131138</td>
<td>SALIDA REPRESA PAUCARANI</td>
<td>418567</td>
<td>8061191</td>
<td>4553</td>
<td>2012 - 2015</td>
<td>PET</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>UCHUSUMA</td>
<td>DESCARGAS MEDIAS</td>
<td>19131140</td>
<td>REPRESA PAUCARANI</td>
<td>417976</td>
<td>8061474</td>
<td>4600</td>
<td>2004 - 2015</td>
<td>PET</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>UCHUSUMA</td>
<td>VOLUMEN DE EMBALSE</td>
<td>1913140S</td>
<td>REPRESA PAUCARANIS</td>
<td>417976</td>
<td>8061474</td>
<td>4600</td>
<td>2004 - 2015</td>
<td>PET</td>
<td></td>
</tr>
</tbody>
</table>
2.6. Evaluación de las Estaciones Hidrométricas

2.6.1. Sistema Hidráulico Mayor Alto Uchusuma

En este sistema hidráulico se encuentra la mayor parte de estaciones hidrométricas que son de nuestro interés en el presente trabajo. En el Anexo No. 2, se muestra el Mapa de ubicación de dichas estaciones.

2.6.1.1. Estación Hidrométrica Canal Queñuta

Se trata de una estación recientemente implementada y que opera normalmente en épocas de avenidas. Sus características se muestran en la Tabla No. 2-3. En la Tabla No. 2-4 se muestran los aforos realizados entre el año 2014 y 2016.
Tabla No. 2-3 Características Estación Hidrométrica Canal Queñuta

<table>
<thead>
<tr>
<th>N°</th>
<th>Nombre</th>
<th>Descripción</th>
<th>Fotografía</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COD_HIDRO</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>COD_OPER</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>COD_HIDROGRA</td>
<td>0148</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>COD_BOCA</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ESTE</td>
<td>425480</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NORTE</td>
<td>8054607</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ZONA_UTM</td>
<td>19B</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CANAL</td>
<td>Queñuta</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>PROGRESIVA</td>
<td>00+060 km.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>TIPO_MEDI</td>
<td>Estación</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>TIPO_VERTE</td>
<td>Trapezoidal</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>ESTA_ME</td>
<td>Bueno</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>METODO</td>
<td>Limnímetro</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>ANCHO_G</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>B_MAYOR</td>
<td>0.85 metros</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>B_MENOR</td>
<td>0.54 metros</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>ALTURA</td>
<td>0.50 metros</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>TALUD</td>
<td>35°</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>TIRANTE</td>
<td>0.19 metros</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>OBSERV</td>
<td>Estación recientemente implementada, se ubica a 60 metros de la Bocatoma Queñuta.</td>
<td></td>
</tr>
</tbody>
</table>
Tabla No. 2-4 Aforos Estación Limnemétrica Canal Queñuta

FECHA DE CALIBRACIÓN: 01/03/2016
ELABORACIÓN: Ing. Vianney Torres Alférez
Bach. Ing. Gladys Mamani Cutipa
AFOROS:
Téc. Basilio Asillo Parari
Téc. Wladimiro Villegas Lima

<table>
<thead>
<tr>
<th>FECHA</th>
<th>LECTURA MIRA (m)</th>
<th>CAUDAL MEDIDO (m³/s)</th>
<th>CAUDAL CALCULADO (m³/s)</th>
<th>DIFERENCIA (m³/s)</th>
<th>ERROR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25/11/2014</td>
<td>0.140</td>
<td>0.038</td>
<td>0.048</td>
<td>-0.010</td>
<td>25.036</td>
</tr>
<tr>
<td>28/03/2016</td>
<td>0.140</td>
<td>0.047</td>
<td>0.048</td>
<td>-0.001</td>
<td>1.093</td>
</tr>
<tr>
<td>17/12/2014</td>
<td>0.145</td>
<td>0.044</td>
<td>0.050</td>
<td>-0.006</td>
<td>14.673</td>
</tr>
<tr>
<td>29/10/2014</td>
<td>0.150</td>
<td>0.049</td>
<td>0.053</td>
<td>-0.004</td>
<td>9.126</td>
</tr>
<tr>
<td>25/02/2015</td>
<td>0.160</td>
<td>0.073</td>
<td>0.060</td>
<td>0.013</td>
<td>-18.192</td>
</tr>
<tr>
<td>14/01/2016</td>
<td>0.165</td>
<td>0.064</td>
<td>0.063</td>
<td>0.001</td>
<td>-1.640</td>
</tr>
<tr>
<td>29/10/2015</td>
<td>0.170</td>
<td>0.066</td>
<td>0.066</td>
<td>0.000</td>
<td>0.382</td>
</tr>
<tr>
<td>26/11/2015</td>
<td>0.170</td>
<td>0.067</td>
<td>0.066</td>
<td>0.001</td>
<td>-1.116</td>
</tr>
<tr>
<td>21/12/2015</td>
<td>0.170</td>
<td>0.067</td>
<td>0.066</td>
<td>0.001</td>
<td>-1.116</td>
</tr>
<tr>
<td>29/01/2014</td>
<td>0.170</td>
<td>0.085</td>
<td>0.066</td>
<td>0.019</td>
<td>-22.056</td>
</tr>
<tr>
<td>27/03/2014</td>
<td>0.180</td>
<td>0.073</td>
<td>0.073</td>
<td>0.000</td>
<td>0.088</td>
</tr>
<tr>
<td>29/06/2015</td>
<td>0.180</td>
<td>0.075</td>
<td>0.073</td>
<td>0.002</td>
<td>-2.581</td>
</tr>
<tr>
<td>24/09/2015</td>
<td>0.190</td>
<td>0.072</td>
<td>0.080</td>
<td>-0.008</td>
<td>11.322</td>
</tr>
<tr>
<td>26/06/2015</td>
<td>0.190</td>
<td>0.092</td>
<td>0.080</td>
<td>0.012</td>
<td>-12.879</td>
</tr>
<tr>
<td>29/09/2014</td>
<td>0.200</td>
<td>0.086</td>
<td>0.088</td>
<td>-0.002</td>
<td>1.755</td>
</tr>
<tr>
<td>30/01/2015</td>
<td>0.200</td>
<td>0.108</td>
<td>0.088</td>
<td>0.020</td>
<td>-18.973</td>
</tr>
<tr>
<td>29/04/2014</td>
<td>0.210</td>
<td>0.089</td>
<td>0.095</td>
<td>-0.006</td>
<td>6.893</td>
</tr>
<tr>
<td>29/05/2014</td>
<td>0.210</td>
<td>0.089</td>
<td>0.095</td>
<td>-0.006</td>
<td>6.893</td>
</tr>
<tr>
<td>25/08/2014</td>
<td>0.215</td>
<td>0.092</td>
<td>0.099</td>
<td>-0.007</td>
<td>7.659</td>
</tr>
<tr>
<td>29/04/2015</td>
<td>0.220</td>
<td>0.104</td>
<td>0.103</td>
<td>0.001</td>
<td>-0.940</td>
</tr>
<tr>
<td>16/07/2015</td>
<td>0.230</td>
<td>0.112</td>
<td>0.111</td>
<td>0.001</td>
<td>-0.741</td>
</tr>
<tr>
<td>26/06/2014</td>
<td>0.240</td>
<td>0.107</td>
<td>0.120</td>
<td>-0.013</td>
<td>11.752</td>
</tr>
<tr>
<td>25/03/2015</td>
<td>0.240</td>
<td>0.134</td>
<td>0.120</td>
<td>0.014</td>
<td>-10.765</td>
</tr>
<tr>
<td>26/02/2016</td>
<td>0.300</td>
<td>0.172</td>
<td>0.175</td>
<td>-0.003</td>
<td>1.871</td>
</tr>
<tr>
<td>27/07/2014</td>
<td>0.355</td>
<td>0.218</td>
<td>0.234</td>
<td>-0.016</td>
<td>7.226</td>
</tr>
</tbody>
</table>

En la Figura No. 2-14 se muestra la curva de calibración de la estación Canal Queñuta.
2.6.1.2. Estación Hidrométrica Canal Uncalluta

En la Tabla No. 2-5 se muestra las características de la estación hidrométrica Canal Uncalluta y en la Tabla No. 2-6 se muestran los aforos realizados en dicha estación. Asimismo en la Figura No. 2-15 se presenta la curva de calibración de dicha estación hidrométrica. Esta estación registra las descargas de ingreso a la represa Paucarani.

Tabla No. 2-5 Características Estación Hidrométrica Canal Uncalluta

<table>
<thead>
<tr>
<th>N°</th>
<th>Nombre</th>
<th>Descripción</th>
<th>Fotografía</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COD_HIDRO</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>COD_OPER</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>COD_HIDROGRA</td>
<td>0148</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>COD_BOCA</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>ESTE</td>
<td>418296</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>NORTE</td>
<td>8062064</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>ZONA_UTC</td>
<td>185</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>CANAL</td>
<td>Uncalluta</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>PROGRESIVA</td>
<td>03+0.10 km.</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>TIPO_MEDI</td>
<td>Estación</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>TIPO_VERTE</td>
<td>Rectangular</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>ESTA_ME</td>
<td>Bueno</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>METODO</td>
<td>Limnímetro</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>ANCHO_G</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>B_MAYOR</td>
<td>1.04 metros</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>B_MENOR</td>
<td>1.04 metros</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>ALTURA</td>
<td>0.95 metros</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>TALUD</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>TIANTE</td>
<td>0.33 metros</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>FECH_INV</td>
<td>Febrero, 2016</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>OBSERV</td>
<td>Canal de emergencia para afianzamiento de la Represa Paucarani, viene operando desde abril del año 2012.</td>
<td>-</td>
</tr>
</tbody>
</table>
En la Figura No. 2-15, se muestra la curva de calibración de la estación Canal Uncalluta al ingreso a la represa Paucarani.

![Curva de Calibración Estación Hidrométrica Canal Uncalluta](image)

\[Q = 1.4141H^2 + 1.7568H - 0.0296 \]
\[R^2 = 0.9998 \]

<table>
<thead>
<tr>
<th>Nº</th>
<th>FECHA</th>
<th>LECTURA MIRA (m)</th>
<th>ÁREA (m²)</th>
<th>CAUDAL MEDIDO (m³/s)</th>
<th>CAUDAL CALCulado (m³/s)</th>
<th>DIFERENCIA (m³/s)</th>
<th>ERROR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24/01/2012</td>
<td>0.025</td>
<td>0.027</td>
<td>0.013</td>
<td>0.015</td>
<td>-0.002</td>
<td>16.952</td>
</tr>
<tr>
<td>2</td>
<td>12/01/2012</td>
<td>0.070</td>
<td>0.086</td>
<td>0.105</td>
<td>0.100</td>
<td>0.005</td>
<td>-4.471</td>
</tr>
<tr>
<td>3</td>
<td>05/02/2012</td>
<td>0.130</td>
<td>0.134</td>
<td>0.220</td>
<td>0.223</td>
<td>-0.003</td>
<td>1.219</td>
</tr>
<tr>
<td>4</td>
<td>06/02/2012</td>
<td>0.300</td>
<td>0.324</td>
<td>0.625</td>
<td>0.625</td>
<td>0.000</td>
<td>-0.047</td>
</tr>
</tbody>
</table>

Figura No. 2-15 Curva de Calibración Estación Hidrométrica Canal Uncalluta

2.6.1.3. Estación Hidrométrica Bocatoma Uchusuma

Emplazada aguas abajo de la captación Bocatoma Uchusuma sobre el río del mismo nombre. En la Tabla No. 2-7 se muestra las características de la estación hidrométrica Bocatoma Uchusuma y en la Tabla No. 2-8 se muestran los aforos realizados en dicha estación. Asimismo en la Figura No. 2-16 se presenta la
curva de calibración de dicha estación hidrométrica. Esta estación registra las descargas de ingreso al canal Uchusuma Alto.

Tabla No. 2-7 Características Estación Hidrométrica Bocatoma Uchusuma

<table>
<thead>
<tr>
<th>Nº</th>
<th>Nombre</th>
<th>Descripción</th>
<th>Fotografía</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COD_HIDRO</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>COD_OPER</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>COD_HIDROGRA</td>
<td>0148</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>COD_BOCANA</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ESTE</td>
<td>432397</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NORTE</td>
<td>8056606</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ZONA_UTM</td>
<td>19S</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CANAL</td>
<td>Cauce natural de río</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>PROGRESIVA</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>TIPO_MED</td>
<td>Estación</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>TIPO_VERTE</td>
<td>Cauce natural de río</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>ESTA_ME</td>
<td>Buena</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>METODO</td>
<td>Limnímetro</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>ANCHO_G</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>B_MAYOR</td>
<td>5.06 metros</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>B_MENOR</td>
<td>5.06 metros</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>ALTURA</td>
<td>1.16 metros</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>TALUD</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>TIJANTE</td>
<td>0.67 metros</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>OBSERV</td>
<td>Estación se ubica a 80 metros antes de la Bocatoma Uchusuma-El Ayro.</td>
<td></td>
</tr>
</tbody>
</table>

Tabla No. 2-8 Aforos Estación Hidrométrica Bocatoma Uchusuma

<table>
<thead>
<tr>
<th>FECHA</th>
<th>LECTURA MIRA (m)</th>
<th>ÁREA (m²)</th>
<th>VELOCIDAD (m/s)</th>
<th>CAUDAL MEDIDO (m³/s)</th>
<th>CAUDAL CALCULADO (m³/s)</th>
<th>DIFERENCIA (m³/s)</th>
<th>ERROR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14/06/2015</td>
<td>0.510</td>
<td>0.792</td>
<td>0.611</td>
<td>0.484</td>
<td>0.467</td>
<td>-0.003</td>
<td>0.652</td>
</tr>
<tr>
<td>21/06/2015</td>
<td>0.520</td>
<td>0.813</td>
<td>0.616</td>
<td>0.501</td>
<td>0.515</td>
<td>-0.014</td>
<td>2.841</td>
</tr>
<tr>
<td>28/06/2015</td>
<td>0.540</td>
<td>0.901</td>
<td>0.666</td>
<td>0.600</td>
<td>0.575</td>
<td>0.025</td>
<td>4.246</td>
</tr>
<tr>
<td>30/03/2016</td>
<td>0.565</td>
<td>0.962</td>
<td>0.671</td>
<td>0.650</td>
<td>0.655</td>
<td>-0.005</td>
<td>0.720</td>
</tr>
<tr>
<td>21/12/2015</td>
<td>0.580</td>
<td>1.137</td>
<td>0.595</td>
<td>0.677</td>
<td>0.706</td>
<td>-0.029</td>
<td>4.300</td>
</tr>
<tr>
<td>26/02/2016</td>
<td>0.585</td>
<td>1.224</td>
<td>0.604</td>
<td>0.739</td>
<td>0.724</td>
<td>0.015</td>
<td>2.054</td>
</tr>
<tr>
<td>29/10/2015</td>
<td>0.590</td>
<td>1.079</td>
<td>0.695</td>
<td>0.750</td>
<td>0.742</td>
<td>0.008</td>
<td>1.091</td>
</tr>
<tr>
<td>28/04/2016</td>
<td>0.600</td>
<td>1.170</td>
<td>0.681</td>
<td>0.797</td>
<td>0.779</td>
<td>0.018</td>
<td>2.298</td>
</tr>
<tr>
<td>27/05/2016</td>
<td>0.670</td>
<td>1.510</td>
<td>0.699</td>
<td>1.055</td>
<td>1.071</td>
<td>-0.016</td>
<td>1.489</td>
</tr>
</tbody>
</table>
Figura No. 2-16 Curva de Calibración Estación Hidrométrica Bocatoma Uchusuma

2.6.1.4. Estación Hidrométrica Canal Patapujo

Ubicada aguas arriba de las graderías de El Ayro. En la Tabla No. 2-9 se muestra las características de la estación y en la Tabla No. 2-10 se muestran los aforos realizados en dicha estación. Asimismo en la Figura No. 2-17 se presenta la curva de calibración de dicha estación hidrométrica.

Tabla No. 2-9 Características Estación Hidrométrica Canal Patapujo

<table>
<thead>
<tr>
<th>Nº</th>
<th>Nombre</th>
<th>Descripción</th>
<th>Fotografía</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COD_HIDRO</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>COD_OPER</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>COD_HIDROGRA</td>
<td>0148</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>COD_BOCA</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ESTE</td>
<td>433084</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NORTE</td>
<td>9053031</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ZONA UTM</td>
<td>919</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CANAL</td>
<td>Patapujo</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>PROGRESMA</td>
<td>46+410 km.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>TIPO_MEDI</td>
<td>Estación</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>TIPO_VERTE</td>
<td>Trapezoidal</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>ESTA_ME</td>
<td>Regular</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>METODO</td>
<td>Línmímetro</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>ANCHO_G</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>B_MAYOR</td>
<td>1.65 metros</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>B_MENOR</td>
<td>0.97 metros</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>ALTURA</td>
<td>0.85 metros</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>TALUD</td>
<td>35°</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>TIRANTE</td>
<td>0.15 metros</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>FECH_INV</td>
<td>May, 2016</td>
<td></td>
</tr>
</tbody>
</table>
Tabla No. 2-10 Aforos Estación Hidrométrica Canal Patapujo

<table>
<thead>
<tr>
<th>Nº</th>
<th>FECHA</th>
<th>LECTURA MIRA (m)</th>
<th>ÁREA (m²)</th>
<th>CAUDAL MEDIDO (m³/s)</th>
<th>CAUDAL CALCULADO (m³/s)</th>
<th>DIFERENCIA (m³/s)</th>
<th>ERROR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>09/11/2000</td>
<td>0.070</td>
<td>0.059</td>
<td>0.014</td>
<td>0.016</td>
<td>-0.002</td>
<td>14.611</td>
</tr>
<tr>
<td>2</td>
<td>09/12/2000</td>
<td>0.170</td>
<td>0.136</td>
<td>0.081</td>
<td>0.076</td>
<td>0.005</td>
<td>5.826</td>
</tr>
<tr>
<td>3</td>
<td>10/10/2000</td>
<td>0.180</td>
<td>0.146</td>
<td>0.093</td>
<td>0.094</td>
<td>0.009</td>
<td>3.312</td>
</tr>
<tr>
<td>4</td>
<td>16/12/2009</td>
<td>0.200</td>
<td>0.152</td>
<td>0.097</td>
<td>0.101</td>
<td>-0.004</td>
<td>4.630</td>
</tr>
<tr>
<td>5</td>
<td>18/03/2000</td>
<td>0.230</td>
<td>0.193</td>
<td>0.146</td>
<td>0.130</td>
<td>0.016</td>
<td>11.137</td>
</tr>
<tr>
<td>6</td>
<td>14/04/2000</td>
<td>0.270</td>
<td>0.233</td>
<td>0.188</td>
<td>0.172</td>
<td>-0.016</td>
<td>5.533</td>
</tr>
<tr>
<td>7</td>
<td>04/08/2000</td>
<td>0.280</td>
<td>0.238</td>
<td>0.194</td>
<td>0.183</td>
<td>0.011</td>
<td>5.513</td>
</tr>
<tr>
<td>8</td>
<td>15/03/2007</td>
<td>0.295</td>
<td>0.251</td>
<td>0.203</td>
<td>0.201</td>
<td>0.002</td>
<td>1.031</td>
</tr>
<tr>
<td>9</td>
<td>25/11/2000</td>
<td>0.300</td>
<td>0.257</td>
<td>0.203</td>
<td>0.207</td>
<td>-0.002</td>
<td>0.940</td>
</tr>
<tr>
<td>10</td>
<td>18/03/2009</td>
<td>0.330</td>
<td>0.268</td>
<td>0.248</td>
<td>0.245</td>
<td>-0.003</td>
<td>1.351</td>
</tr>
<tr>
<td>11</td>
<td>12/01/2001</td>
<td>0.350</td>
<td>0.315</td>
<td>0.261</td>
<td>0.271</td>
<td>-0.010</td>
<td>3.945</td>
</tr>
<tr>
<td>12</td>
<td>17/11/2006</td>
<td>0.370</td>
<td>0.340</td>
<td>0.315</td>
<td>0.299</td>
<td>0.016</td>
<td>5.541</td>
</tr>
<tr>
<td>13</td>
<td>21/03/2000</td>
<td>0.430</td>
<td>0.348</td>
<td>0.341</td>
<td>0.390</td>
<td>-0.049</td>
<td>14.227</td>
</tr>
<tr>
<td>14</td>
<td>17/02/2000</td>
<td>0.450</td>
<td>0.388</td>
<td>0.400</td>
<td>0.422</td>
<td>-0.022</td>
<td>5.476</td>
</tr>
<tr>
<td>15</td>
<td>19/01/2000</td>
<td>0.500</td>
<td>0.443</td>
<td>0.454</td>
<td>0.508</td>
<td>-0.054</td>
<td>11.828</td>
</tr>
<tr>
<td>16</td>
<td>13/02/2001</td>
<td>0.610</td>
<td>0.610</td>
<td>0.656</td>
<td>0.720</td>
<td>-0.064</td>
<td>9.798</td>
</tr>
<tr>
<td>17</td>
<td>07/02/2012</td>
<td>0.670</td>
<td>0.779</td>
<td>0.960</td>
<td>0.849</td>
<td>0.111</td>
<td>-11.558</td>
</tr>
</tbody>
</table>

Figura No. 2-17 Curva de Calibración Estación Hidrométrica Canal Patapujo

2.6.1.5. Estación Puente Uchusuma

Estación que registra las descargas del río Uchusuma, Canal Patapujo II y las Aguas Subterráneas de El Ayro. En la Tabla No. 2-11 se muestra las características de la estación. De la visita efectuada y según versiones de los ingenieros encargados de la hidrometría del sistema, podemos concluir que las condiciones de revestimiento del canal hacen que la sección sea hidráulicamente muy inestable, lo que hace que las curvas que se venido
generando no funcionen por periodos regulares, lo que origina que los datos de lecturas de mira no puedan ser transformados a descargas.

Asimismo, recomendamos que se tome en cuenta la planificación de una sección de aforo con revestimiento de concreto para establecer una buena sección de aforo que sirva para el registro de las descargas en este punto de control.

Tabla No. 2-11 Características Estación Puente Uchusuma

<table>
<thead>
<tr>
<th>Nº</th>
<th>Nombre</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COD_HIDRO</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>COD_OPER</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>COD_HIDROGRA</td>
<td>0148</td>
</tr>
<tr>
<td>4</td>
<td>COD_BOCA</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>ESTE</td>
<td>433524</td>
</tr>
<tr>
<td>6</td>
<td>NORTE</td>
<td>8056101</td>
</tr>
<tr>
<td>7</td>
<td>ZONA_UTM</td>
<td>19S</td>
</tr>
<tr>
<td>8</td>
<td>CANAL</td>
<td>Uchusuma Alto - Puente El Ayro</td>
</tr>
<tr>
<td>9</td>
<td>PROGRESIVA</td>
<td>00+120 km.</td>
</tr>
<tr>
<td>10</td>
<td>TIPO_MEDI</td>
<td>Estación</td>
</tr>
<tr>
<td>11</td>
<td>TIPO_VERTE</td>
<td>Trapezoidal</td>
</tr>
<tr>
<td>12</td>
<td>ESTA_ME</td>
<td>Bueno</td>
</tr>
<tr>
<td>13</td>
<td>METODO</td>
<td>Limnímetro - Limnígrafo</td>
</tr>
<tr>
<td>14</td>
<td>ANCHO_G</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>B_MAYOR</td>
<td>5.12 metros</td>
</tr>
<tr>
<td>16</td>
<td>B_MENOR</td>
<td>2.90 metros</td>
</tr>
<tr>
<td>17</td>
<td>ALTURA</td>
<td>1.50 metros</td>
</tr>
<tr>
<td>18</td>
<td>TALUD</td>
<td>45°</td>
</tr>
<tr>
<td>19</td>
<td>TIRANTE</td>
<td>0.85 metros</td>
</tr>
<tr>
<td>20</td>
<td>FECH_INV</td>
<td>Mayo, 2016</td>
</tr>
<tr>
<td>21</td>
<td>OBSERV</td>
<td>Estación donde confluyen aguas superficiales del río uchusuma, canal patapujo II y aporte de aguas subterráneas El Ayro.</td>
</tr>
</tbody>
</table>

2.6.1.6. Estación Hidrométrica Represa Casiri

La Represa Casiri, es una presa de gravedad, construida con concreto ciclópeo de sección variada, con una altura máxima de 8,0 metros. En la Tabla No. 2-12 se muestran las características de la estación limnimétrica y en la Figura No. 2-18 se muestra la curva de calibración Altura – Volumen.
Tabla No. 2-12 Características Estación Limnimétrica Represa Casiri

<table>
<thead>
<tr>
<th>N°</th>
<th>Nombre</th>
<th>Descripción</th>
<th>Fotografía</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COD_HIDRO</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>COD_OPER</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>COD_HIDROGRA</td>
<td>0144</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>COD_BOCA</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ESTE</td>
<td>412803</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NORTE</td>
<td>8073196</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ZONA UTM</td>
<td>198</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CANAL</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>PROGRESIVA</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>TIPO_MEDI</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>TIPO_VENTE</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>EST_MER</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>METODO</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>ANCHO_G</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>B_MAYOR</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>B_MENOR</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>ALTURA</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>TALUD</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>TIRANTE</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>FECH_INV</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>OBSERV</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Figura No. 2-18 Curva Altura-Área-Volumen Estación Limnimétrica Represa Casiri

2.6.1.7. Estación Hidrométrica Represa Paucarani

En la Tabla No. 2-13 se muestran las características de la estación limnimétrica y en la Figura No. 2-19 se muestra la curva de calibración Altura – Volumen.
Tabla No. 2-13 Estación Limnimétrica Represa Paucarani

<table>
<thead>
<tr>
<th>N°</th>
<th>Nombre</th>
<th>Descripción</th>
<th>Fotografía</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COD_HIDRO</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>COD_OPER</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>COD_HIDROGRA</td>
<td>0148</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>COD_BOCA</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ESTE</td>
<td>417976</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NORTE</td>
<td>8061474</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ZONA_UTM</td>
<td>19S</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CANAL</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>PROGRESIVA</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>TIPO_MEDI</td>
<td>Estación</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>TIPO_VERTE</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>ESTA_ME</td>
<td>Bueno</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>METODO</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>ANCHO_G</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>B_MAYOR</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>B_MENOR</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>ALTURA</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>TALUD</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>TIRANTE</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>OBSERV</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Figura No. 2-19 Curva Altura-Área-Volumen Estación Limnimétrica Represa Paurani
2.6.1.8. Estación Salida Represa Paucarani

Esta estación hidrométrica registra las descargas de la represa que son conducidas hacia el canal Uchusuma para ser trasvasadas a la quebrada Vilavilani y posteriormente ser entregadas para uso agrícola y poblacional. En la Tabla No. 2-14, se muestran las características de la estación.

Tabla No. 2-14 Características Estación Hidrométrica Salida Represa Paucarani

<table>
<thead>
<tr>
<th>N°</th>
<th>Nombre</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COD_HIDRO</td>
<td>.</td>
</tr>
<tr>
<td>2</td>
<td>COD_OPER</td>
<td>.</td>
</tr>
<tr>
<td>3</td>
<td>COD_HIDROGRA</td>
<td>0148</td>
</tr>
<tr>
<td>4</td>
<td>COD_BOCA</td>
<td>.</td>
</tr>
<tr>
<td>5</td>
<td>ESTE</td>
<td>418967</td>
</tr>
<tr>
<td>6</td>
<td>NORTE</td>
<td>8061156</td>
</tr>
<tr>
<td>7</td>
<td>ZONA_UTM</td>
<td>19S</td>
</tr>
<tr>
<td>8</td>
<td>CANAL</td>
<td>Canal de Salida y Regulación de la Represa Paucarani</td>
</tr>
<tr>
<td>9</td>
<td>PROGRESIVA</td>
<td>00+0.070 km.</td>
</tr>
<tr>
<td>10</td>
<td>TIPO_MEDI</td>
<td>Estación</td>
</tr>
<tr>
<td>11</td>
<td>TIPO_VERTE</td>
<td>Rectangular</td>
</tr>
<tr>
<td>12</td>
<td>ESTA_ME</td>
<td>Bueno</td>
</tr>
<tr>
<td>13</td>
<td>METODO</td>
<td>Limnímetro</td>
</tr>
<tr>
<td>14</td>
<td>ANCHO_G</td>
<td>.</td>
</tr>
<tr>
<td>15</td>
<td>B_MAYOR</td>
<td>1.05 metros</td>
</tr>
<tr>
<td>16</td>
<td>B_MENOR</td>
<td>1.05 metros</td>
</tr>
<tr>
<td>17</td>
<td>ALTURA</td>
<td>2.50 metros</td>
</tr>
<tr>
<td>18</td>
<td>TALUD</td>
<td>.</td>
</tr>
<tr>
<td>19</td>
<td>TIRANTE</td>
<td>0.23 metros</td>
</tr>
<tr>
<td>21</td>
<td>OBSERV</td>
<td>Infraestructura permite regular el caudal de salida de la represa Paucarani, el mismo que permite optimizar y controlar el uso del agua. El caudal de salida se regula en función a la demanda de agua.</td>
</tr>
</tbody>
</table>

En la Tabla No. 2-15, se muestra los datos para la curva de calibración de la estación y en la Figura No. 2-20 se muestra la curva de calibración de dicha estación.
Tabla No. 2-15 Aforos Estación Limnimétrica Salida Represa Paucarani

FECHA DE CALIBRACIÓN: 04/11/2015
ELABORACIÓN: Ing. Vianney Torres Alférez
Téc. Wladimiro Villegas Lima

<table>
<thead>
<tr>
<th>Nº</th>
<th>FECHA</th>
<th>LECTURA MIRA (m)</th>
<th>ÁREA (m²)</th>
<th>CAUDAL MEDIDO (m³/s)</th>
<th>CAUDAL CALCULADO (m³/s)</th>
<th>DIFERENCIA (m³/s)</th>
<th>ERROR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29/01/2013</td>
<td>0.070</td>
<td>0.064</td>
<td>0.033</td>
<td>0.031</td>
<td>0.002</td>
<td>-5.172</td>
</tr>
<tr>
<td>2</td>
<td>31/12/2013</td>
<td>0.230</td>
<td>0.291</td>
<td>0.264</td>
<td>0.287</td>
<td>-0.023</td>
<td>8.738</td>
</tr>
<tr>
<td>3</td>
<td>31/12/2013</td>
<td>0.280</td>
<td>0.374</td>
<td>0.412</td>
<td>0.414</td>
<td>-0.002</td>
<td>0.520</td>
</tr>
<tr>
<td>4</td>
<td>29/10/2015</td>
<td>0.285</td>
<td>0.346</td>
<td>0.430</td>
<td>0.428</td>
<td>0.002</td>
<td>-0.459</td>
</tr>
<tr>
<td>5</td>
<td>30/01/2014</td>
<td>0.310</td>
<td>0.324</td>
<td>0.472</td>
<td>0.501</td>
<td>-0.029</td>
<td>6.083</td>
</tr>
<tr>
<td>6</td>
<td>03/01/2014</td>
<td>0.330</td>
<td>0.427</td>
<td>0.527</td>
<td>0.562</td>
<td>-0.035</td>
<td>6.729</td>
</tr>
<tr>
<td>7</td>
<td>31/12/2013</td>
<td>0.340</td>
<td>0.472</td>
<td>0.592</td>
<td>0.595</td>
<td>-0.003</td>
<td>0.444</td>
</tr>
<tr>
<td>8</td>
<td>31/12/2013</td>
<td>0.390</td>
<td>0.525</td>
<td>0.799</td>
<td>0.768</td>
<td>0.031</td>
<td>-3.902</td>
</tr>
<tr>
<td>9</td>
<td>31/12/2013</td>
<td>0.440</td>
<td>0.586</td>
<td>1.024</td>
<td>0.961</td>
<td>0.063</td>
<td>-6.122</td>
</tr>
<tr>
<td>10</td>
<td>31/12/2013</td>
<td>0.550</td>
<td>0.640</td>
<td>1.291</td>
<td>1.220</td>
<td>0.071</td>
<td>-5.513</td>
</tr>
</tbody>
</table>

Ecuación de Calibración
\[Q = 4.4376H^{1.8631} \]
\[R² = 0.9972 \]

![CURVA DE CALIBRACIÓN ESTACIÓN SALIDA REPRESA PAUCARANI RÍO UCHUSUMA](image)

Figura No. 2-20 Curva de Calibración Estación Salida Represa Paucarani

2.6.1.9. Estación Piedras Blancas

La estación Piedras Blancas se encuentra ubicada en la cabecera de la zona de uso aguas arriba de los reservorios Cerro Blanco, tal como se muestra en Figura No. 2-21.
Figura No. 2-21 Ubicación Estación Piedras Blancas

Esta estación hidrométrica es automática, actualmente cuenta con transmisión en tiempo real de datos de niveles de agua y precipitación. También se encuentra equipada con equipos de registro de calidad de agua en tiempo real que reporta pH, Temperatura del agua, CE, TDS, Turbidez. Por motivos de seguridad y falta de decisión y coordinación entre las instituciones no se encuentra instalado el sensor de calidad de agua, reportándose únicamente lecturas de niveles de agua en el canal.

Debemos mencionar que en esta estación se registra todo el caudal que llega para la ciudad y valle de Tacna y donde aguas abajo se distribuye en el partidor Cerro Blanco, parte para la Población que es administrada por la EPS Tacna y la otra parte para la agricultura administrado por la Junta de Usuarios Tacna.

En la Figura 2-22 y 2-23, se puede observar imágenes actuales (16 Junio 2016), de la estación Cerro Blanco, dicha estación se encuentra operativa, la lectura de mira es legible, además cuenta con sistema automático de lectura de nivel agua en el canal y transferencia de datos en tiempo real. Dicha estación fue construida
e implementada por ANA y transferida vía convenio a SENAMHI Tacna para su operación.

Figura No. 2-22 Estación Piedras Blancas

Figura No. 2-23 Lectura de Mira (16/06/2016)

Asimismo dicha estación cuenta con su curva de calibración actualizada y verificada, la cual viene siendo utilizada para transformar las lecturas de mira en
caudales en dicha estación. En la Tabla No. 2-16, se muestran las características de la estación, en la Tabla No. 2-17 los aforos realizados y en la Figura No. 2-24 la curva de calibración de dicha estación.

Tabla No. 2-16 Estación Hidrométrica Piedras Blancas

<table>
<thead>
<tr>
<th>Nº</th>
<th>Nombre</th>
<th>Descripción</th>
<th>Fotografía</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COD_HIDRO</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>COD_OPER</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>COD_HIDROGRA</td>
<td>13155</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>COD_BOCA</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ESTE</td>
<td>37797</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NORTE</td>
<td>8012911</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ZONA UTM</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CANAL</td>
<td>Canal Uchusuma Bajo - Piedras Blancas</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>PROGRESIVA</td>
<td>14430.37 km.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>TIPO_MEDI</td>
<td>Estación RBC.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>TIPO_VERTE</td>
<td>Rectangular</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>ESTA_ME</td>
<td>Bueno</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>METODO</td>
<td>Limnimetro</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>ANCHO_G</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>B_MAYOR</td>
<td>2.50 metros</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>B_MENOR</td>
<td>2.50 metros</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>ALTURA</td>
<td>0.70 metros</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>TALUD</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>TIRANTE</td>
<td>0.65 metros</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>FECH_INV</td>
<td>Mayo, 2016</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>OBSERV</td>
<td>Estación de medición registra todo el caudal neto antes de ingreso a los reservorios y su distribución con fines de uso poblacional y agrícola.</td>
<td></td>
</tr>
</tbody>
</table>

Tabla No. 2-17 Aforos Estación Hidrométrica Piedras Blancas

<table>
<thead>
<tr>
<th>Nº</th>
<th>FECHA</th>
<th>LECTURA MIRA</th>
<th>AREA</th>
<th>CAUDAL MEDIDO</th>
<th>CAUDAL CALCULADO</th>
<th>DIFERENCIA</th>
<th>ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(día/mes/año)</td>
<td>(m)</td>
<td>(m²)</td>
<td>(m³/s)</td>
<td>(m³/s)</td>
<td>(m³/s)</td>
<td>(%)</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0.390</td>
<td>0.330</td>
<td>0.252</td>
<td>0.078</td>
<td>-23.535</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.400</td>
<td>0.381</td>
<td>0.279</td>
<td>0.101</td>
<td>-26.517</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>13/09/2008</td>
<td>0.420</td>
<td>1.079</td>
<td>0.244</td>
<td>0.310</td>
<td>-0.066</td>
<td>27.099</td>
</tr>
<tr>
<td>4</td>
<td>13/09/2008</td>
<td>0.440</td>
<td>1.123</td>
<td>0.287</td>
<td>0.345</td>
<td>-0.056</td>
<td>20.207</td>
</tr>
<tr>
<td>5</td>
<td>13/09/2008</td>
<td>0.405</td>
<td>1.158</td>
<td>0.320</td>
<td>0.371</td>
<td>-0.094</td>
<td>16.807</td>
</tr>
<tr>
<td>6</td>
<td>03/11/2006</td>
<td>0.560</td>
<td>1.438</td>
<td>0.598</td>
<td>0.638</td>
<td>-0.040</td>
<td>8.877</td>
</tr>
<tr>
<td>7</td>
<td>03/11/2006</td>
<td>0.575</td>
<td>1.462</td>
<td>0.625</td>
<td>0.685</td>
<td>-0.060</td>
<td>9.541</td>
</tr>
<tr>
<td>8</td>
<td>14/07/2007</td>
<td>0.580</td>
<td>1.464</td>
<td>0.681</td>
<td>0.701</td>
<td>-0.100</td>
<td>1.454</td>
</tr>
<tr>
<td>9</td>
<td>31/10/2006</td>
<td>0.595</td>
<td>1.500</td>
<td>0.711</td>
<td>0.750</td>
<td>-0.099</td>
<td>8.540</td>
</tr>
<tr>
<td>10</td>
<td>04/11/2005</td>
<td>0.600</td>
<td>1.527</td>
<td>0.723</td>
<td>0.767</td>
<td>-0.044</td>
<td>6.149</td>
</tr>
<tr>
<td>11</td>
<td>04/11/2006</td>
<td>0.610</td>
<td>1.554</td>
<td>0.777</td>
<td>0.802</td>
<td>-0.025</td>
<td>3.206</td>
</tr>
<tr>
<td>12</td>
<td>19/07/2007</td>
<td>0.620</td>
<td>1.567</td>
<td>0.855</td>
<td>0.838</td>
<td>0.017</td>
<td>1.965</td>
</tr>
<tr>
<td>13</td>
<td>08/11/2006</td>
<td>0.633</td>
<td>1.620</td>
<td>0.929</td>
<td>0.886</td>
<td>0.042</td>
<td>4.491</td>
</tr>
<tr>
<td>14</td>
<td>18/02/2007</td>
<td>0.690</td>
<td>1.673</td>
<td>1.071</td>
<td>0.992</td>
<td>0.079</td>
<td>7.410</td>
</tr>
<tr>
<td>15</td>
<td>08/11/2006</td>
<td>0.683</td>
<td>1.723</td>
<td>1.120</td>
<td>1.087</td>
<td>0.033</td>
<td>2.938</td>
</tr>
<tr>
<td>16</td>
<td>03/04/2007</td>
<td>0.710</td>
<td>1.795</td>
<td>1.276</td>
<td>1.306</td>
<td>0.070</td>
<td>5.496</td>
</tr>
<tr>
<td>17</td>
<td>15/05/2007</td>
<td>0.760</td>
<td>1.907</td>
<td>1.465</td>
<td>1.445</td>
<td>0.020</td>
<td>1.365</td>
</tr>
<tr>
<td>18</td>
<td>23/02/2008</td>
<td>0.796</td>
<td>2.011</td>
<td>1.660</td>
<td>1.633</td>
<td>0.027</td>
<td>1.650</td>
</tr>
<tr>
<td>19</td>
<td>16/05/2007</td>
<td>0.880</td>
<td>2.002</td>
<td>2.112</td>
<td>2.121</td>
<td>-0.090</td>
<td>9.405</td>
</tr>
<tr>
<td>20</td>
<td>18/05/2007</td>
<td>0.890</td>
<td>2.198</td>
<td>2.121</td>
<td>2.183</td>
<td>-0.062</td>
<td>2.939</td>
</tr>
</tbody>
</table>

FECHA DE CALIBRACIÓN: 21/10/2008
ELABORACIÓN: Ing. Manuel Collas Chavez
Ing. Vianney Torres Alférez
Figura No. 2-24 Curva de Calibración Estación Hidrométrica Piedras Blancas

2.6.1.10. Estación Hidrométrica Piedras Blancas Uso Poblacional

Ubicada en la cabecera de la zona de aprovechamiento. En la Tabla No. 2-18 se muestran las características de la estación y en la Tabla No. 2-19 se muestran los aforos realizados en dicha estación. Asimismo en la Figura No. 2-25 se presenta la curva de calibración de dicha estación hidrométrica.
Tabla No. 2-18 Características Estación Hidrométrica Piedras Blancas Uso Poblacional

<table>
<thead>
<tr>
<th>Nº</th>
<th>Nombre</th>
<th>Descripción</th>
<th>Fotografía</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COD_HIDRO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>COD_OPER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>COD_HIDROGRA</td>
<td>13155</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>COD_BOCA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ESTE</td>
<td>375968</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NORTE</td>
<td>8012206</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ZONA_UTM</td>
<td>19S</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CANAL</td>
<td>Canal de Derivación Piedras Blancas</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>PROGRESIVA</td>
<td>00+0.050 km.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>TIPO_MEDI</td>
<td>Parshall W-2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>TIPO_VERTE</td>
<td>Rectangular</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>ESTA_ME</td>
<td>Regular</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>METODO</td>
<td>Limnímetro</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>ANCHO_G</td>
<td>0.61 m.</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>B_MAYOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>B_MENOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>ALTURA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>TALUD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>TIRANTE</td>
<td>0.43 metros</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>OBSERV</td>
<td>Canal de derivación de uso poblacional operado por la EPS-TACNA.</td>
<td></td>
</tr>
</tbody>
</table>

Tabla No. 2-19 Aforos Estación Hidrométrica Piedras Blancas Uso Poblacional

<table>
<thead>
<tr>
<th>Nº</th>
<th>FECHA</th>
<th>LECTURA MIRA (m)</th>
<th>ÁREA (m2)</th>
<th>VELOCIDAD (m/s)</th>
<th>CAUDAL MEDIDO (m3/s)</th>
<th>CAUDAL CALCULADO (m3/s)</th>
<th>DIFERENCIA (m3/s)</th>
<th>ERROR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11/07/2012</td>
<td>0.350</td>
<td>0.285</td>
<td>1.056</td>
<td>0.301</td>
<td>0.302</td>
<td>-0.001</td>
<td>0.223</td>
</tr>
<tr>
<td>2</td>
<td>11/07/2012</td>
<td>0.395</td>
<td>0.325</td>
<td>1.105</td>
<td>0.359</td>
<td>0.361</td>
<td>-0.002</td>
<td>0.573</td>
</tr>
<tr>
<td>3</td>
<td>11/07/2012</td>
<td>0.446</td>
<td>0.388</td>
<td>1.126</td>
<td>0.437</td>
<td>0.432</td>
<td>0.005</td>
<td>-1.043</td>
</tr>
<tr>
<td>4</td>
<td>11/07/2012</td>
<td>0.470</td>
<td>0.412</td>
<td>1.141</td>
<td>0.470</td>
<td>0.467</td>
<td>0.003</td>
<td>-0.540</td>
</tr>
<tr>
<td>5</td>
<td>11/07/2012</td>
<td>0.540</td>
<td>0.498</td>
<td>1.145</td>
<td>0.570</td>
<td>0.575</td>
<td>-0.005</td>
<td>0.799</td>
</tr>
</tbody>
</table>

FECHA DE CALIBRACIÓN : 13/07/2012
ELABORACIÓN : MSc. Ing° Manuel Collas Chávez
: Ing° Vianney Torres Alférez
Figura No. 2-25 Curva Calibración Estación Hidrométrica Piedras Blancas Uso Poblacional

2.6.1.11. Estación Hidrométrica Piedras Blancas Uso Agrícola

Ubicada en la cabecera de la zona de aprovechamiento de uso agrícola. En la Tabla No. 2-20 se muestra las características de la estación y en la Tabla No. 2-21 se muestran los aforos realizados en dicha estación. Asimismo en la Figura No. 2-26 se presenta la curva de calibración de dicha estación hidrométrica.
Tabla No. 2-20 Características Estación Hidrométrica Piedras Blancas Uso Agrícola

<table>
<thead>
<tr>
<th>Nº</th>
<th>Nombre</th>
<th>Descripción</th>
<th>Fotografía</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COD_HIDRO</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>COD_OPER</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>COD_HIDROGRA</td>
<td>13155</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>COD_BOCA</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ESTE</td>
<td>375964</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NORTE</td>
<td>8012212</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ZONA_UTM</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CANAL</td>
<td>Canal de Derivación Piedras Blancas</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>PROGRESIVA</td>
<td>00+0,070 km.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>TIPO_MEDI</td>
<td>Estación</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>TIPO_VERTE</td>
<td>Rectangular</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>ESTA_ME</td>
<td>Bueno</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>METODO</td>
<td>Línimetro</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>ANCHO_G</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>B_MAYOR</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>B_MENOR</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>ALTURA</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>TALUD</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>TIRANTE</td>
<td>0.40 metros</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>OBSERV</td>
<td>Canal de derivación de uso agrícola de los sectores de riego Uchusuma y Magollo.</td>
<td></td>
</tr>
</tbody>
</table>

Tabla No. 2-21 Aforos Estación Hidrométrica Piedras Blancas Uso Agrícola

<table>
<thead>
<tr>
<th>Nº</th>
<th>FECHA (dia/mes/año)</th>
<th>HORA (hh:mm)</th>
<th>LECTURA MIRA (m)</th>
<th>AREA (m²)</th>
<th>VELOCIDAD (m/s)</th>
<th>CAUDAL MEDIDO (m³/s)</th>
<th>CAUDAL CALCULADO (m³/s)</th>
<th>DIFERENCIA (m³/s)</th>
<th>ERROR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>09/01/2015</td>
<td>11:55</td>
<td>0.120</td>
<td>0.108</td>
<td>0.324</td>
<td>0.035</td>
<td>0.036</td>
<td>-0.001</td>
<td>2.671</td>
</tr>
<tr>
<td>2</td>
<td>09/01/2015</td>
<td>12:22</td>
<td>0.260</td>
<td>0.257</td>
<td>0.588</td>
<td>0.151</td>
<td>0.144</td>
<td>0.007</td>
<td>-4.673</td>
</tr>
<tr>
<td>3</td>
<td>09/01/2015</td>
<td>12:47</td>
<td>0.335</td>
<td>0.304</td>
<td>0.740</td>
<td>0.225</td>
<td>0.227</td>
<td>-0.002</td>
<td>0.825</td>
</tr>
<tr>
<td>4</td>
<td>09/01/2015</td>
<td>11:25</td>
<td>0.420</td>
<td>0.377</td>
<td>0.926</td>
<td>0.349</td>
<td>0.340</td>
<td>0.009</td>
<td>2.460</td>
</tr>
<tr>
<td>5</td>
<td>09/01/2015</td>
<td>13:19</td>
<td>0.525</td>
<td>0.480</td>
<td>1.040</td>
<td>0.493</td>
<td>0.508</td>
<td>-0.009</td>
<td>1.822</td>
</tr>
<tr>
<td>6</td>
<td>09/01/2015</td>
<td>13:45</td>
<td>0.625</td>
<td>0.562</td>
<td>1.212</td>
<td>0.681</td>
<td>0.695</td>
<td>-0.014</td>
<td>2.023</td>
</tr>
</tbody>
</table>
Figura No. 2-26 Curva Calibración Estación Hidrométrica Piedras Blancas Uso Agrícola

2.6.2. Sistema Hidráulico Menor Bajo Uchusuma

En este sistema en la actualidad no se dispone de ningún aforador operativo, es decir no existen estructuras de medición. Como es ampliamente conocido, es imprescindible contar con estructuras de medición de caudal debidamente calibradas, el agua en esta región es escasa y con mucha razón se debe tener los elementos necesarios para su adecuado uso.

Los canales laterales en el bloque de riego Uchusuma Bajo, son revestidos y tienen una capacidad de diseño de 2,5 m³/s, pero normalmente operan por debajo de los 0,50 m³/s. En la Tabla No. 2-22, se muestran las características hidráulicas de dichos canales. Se incluyen datos como nombre del lateral, progresiva, margen, número de usuarios atendidos, área servida, tipo, material del cual está construido, estado actual, caudal de diseño y caudal de operación.
2.6.3. Sistema Hidráulico Clase B Aguas Subterráneas El Ayro

El acuífero de El Ayro, es un reservorio que se encuentra ubicado en la cuenca del río Uchusuma, cuyos recursos hídricos se derivan hacia la ciudad y valle de Tacna a través del canal Uchusuma; en diferentes años se han realizado estudios, llegándose a determinar un caudal explotable de 960 l/s que representa 30,24 Hm3/año.

El acuífero se encuentra limitado lateralmente por afloramientos volcánicos que van desde el terciario superior al cuaternario reciente. El acuífero presenta una gran extensión que proviene de un sistema complejo, lo que significa que no se trata de un solo acuífero sino de un conjunto de acuíferos interconectados hidráulicamente cuya extensión abarca unos 500 Km2. La Figura No. 2-29, muestra la Fotografía del Pozo PA-13, el cual registró un caudal de 97 l/s el 20-04-2016.

Tabla No. 2-22 Características Hidráulicas de los Laterales

<table>
<thead>
<tr>
<th>NOMBRE DEL LATERAL</th>
<th>UBICACIÓN</th>
<th>MARGEN</th>
<th>NUMERO DE USUARIOS</th>
<th>AREA SERVIDA</th>
<th>TIPO</th>
<th>MATERIAL</th>
<th>ESTADO</th>
<th>CAUDAL (m3/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lateral 01</td>
<td>CD UCHUSUMA</td>
<td>16+570</td>
<td>M/D</td>
<td>44</td>
<td>125.06</td>
<td>L1</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Lateral 02</td>
<td>CD UCHUSUMA</td>
<td>17+346</td>
<td>M/D</td>
<td>10</td>
<td>15.13</td>
<td>L1</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Lateral 03</td>
<td>CD UCHUSUMA</td>
<td>17+916</td>
<td>M/D</td>
<td>2</td>
<td>4.75</td>
<td>L1</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Lateral 04</td>
<td>CD UCHUSUMA</td>
<td>18+110</td>
<td>M/I</td>
<td>9</td>
<td>14.36</td>
<td>L1</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Lateral 05-A</td>
<td>CD UCHUSUMA</td>
<td>18+265</td>
<td>M/I</td>
<td>78</td>
<td>24.67</td>
<td>L1</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Lateral 06</td>
<td>CD UCHUSUMA</td>
<td>19+107</td>
<td>M/I</td>
<td>6</td>
<td>21.1</td>
<td>L1</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Lateral 07</td>
<td>CD UCHUSUMA</td>
<td>19+703</td>
<td>M/I</td>
<td>25</td>
<td>63.14</td>
<td>L1</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Lateral 07-A</td>
<td>CD UCHUSUMA</td>
<td>20+817</td>
<td>M/D</td>
<td>2</td>
<td>3.85</td>
<td>L1</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Lateral 08</td>
<td>CD UCHUSUMA</td>
<td>21+228</td>
<td>M/I</td>
<td>19</td>
<td>48.98</td>
<td>L1</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Lateral 09</td>
<td>CD UCHUSUMA</td>
<td>21+228</td>
<td>M/I</td>
<td>8</td>
<td>21.42</td>
<td>L1</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Lateral 10</td>
<td>CD UCHUSUMA</td>
<td>22+410</td>
<td>M/D</td>
<td>31</td>
<td>42.55</td>
<td>L1</td>
<td>C/M</td>
<td>B</td>
</tr>
<tr>
<td>Lateral 11</td>
<td>CD UCHUSUMA</td>
<td>22+900</td>
<td>M/I</td>
<td>23</td>
<td>40.89</td>
<td>L1</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Lateral 12</td>
<td>CD UCHUSUMA</td>
<td>23+685</td>
<td>M/I</td>
<td>12</td>
<td>26.45</td>
<td>L1</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Lateral 13</td>
<td>CD UCHUSUMA</td>
<td>25+662</td>
<td>M/I</td>
<td>6</td>
<td>3.95</td>
<td>L1</td>
<td>M</td>
<td>R</td>
</tr>
<tr>
<td>Lateral 14</td>
<td>CD UCHUSUMA</td>
<td>26+170</td>
<td>M/I</td>
<td>8</td>
<td>12.52</td>
<td>L1</td>
<td>M</td>
<td>R</td>
</tr>
<tr>
<td>Lateral 15</td>
<td>CD UCHUSUMA</td>
<td>27+000</td>
<td>M/I</td>
<td>1</td>
<td>14</td>
<td>L1</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>T.P CEPECO</td>
<td>CD UCHUSUMA</td>
<td>34+728</td>
<td>M/D</td>
<td>1</td>
<td>2.3</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>285</td>
</tr>
</tbody>
</table>
La Figura No. 2-30, muestra la Fotografía del Pozo PA-6, el cual registró un caudal de 130 l/s el 20-04-2016.

La Figura No. 2-31, muestra la Fotografía del Pozo PA-9, el cual registró un caudal de 53 l/s el 20-04-2016.

La Figura No. 2-32, Fotografía del Pozo PA-16, registró un nivel piezómetro de 25,75 metros, evaluado el día 20-04-2016.
Figura No. 2-28 Fotografía del Pozo PA-6

Figura No. 2-29 Fotografía del Pozo PA-9
Figura No. 2-30 Fotografía Pozo PA-16
3. **INFORMACION DE LOS PROCEDIMIENTOS DE PLANIFICACION**

En el Sistema Hidráulico Menor Bajo Uchusuma, se cuenta con 17 laterales de riego, la información resumen se muestra en la Tabla No. 3-1. En todo el sector se atiende una superficie total 916,16 ha, con una superficie bajo riego de 584,79 ha. Cada lateral de riego sirve superficies de riego máximas de 115,94 ha como es el caso del Lateral No. 1 hasta mínimas de 2,95 ha, como es el caso del Lateral No. 13.

Asimismo esta tabla muestra los tiempos reales y tiempos de rol en minuto, este último incluye tiempos de recorrido y tiempos de escorrentía por recesión. Por otro lado hemos calculado un parámetro que nos denota una medida de asignación de tiempos de riego promedio en min/ha, para lo cual tenemos un valor medio para todo el sector hidráulico de 19,09 min/ha, con un valor medio máximo de 45,42 min/ha en el Lateral No. 13 y mínimo de 6,91 min/ha en el Lateral No. 7A.

En el Anexo No. 04, se muestra el rol de riego para la campaña 2016, programado por la Junta de Usuarios Tacna, para la Comisión de Regantes Uchusuma.
<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>AREA TOTAL (ha)</th>
<th>AREA BAJO RIEGO (ha)</th>
<th>TIEMPO REAL (min)</th>
<th>TIEMPO DE ROL (min)</th>
<th>TIEMPO PROM. (min/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LATERAL No. 1</td>
<td>197.16</td>
<td>115.94</td>
<td>2057.00</td>
<td>2083.00</td>
<td>17.74</td>
</tr>
<tr>
<td>LATERAL No. 2</td>
<td>29.43</td>
<td>18.50</td>
<td>265.00</td>
<td>279.00</td>
<td>14.33</td>
</tr>
<tr>
<td>LATERAL No. 3</td>
<td>6.67</td>
<td>4.76</td>
<td>110.00</td>
<td>117.00</td>
<td>23.11</td>
</tr>
<tr>
<td>LATERAL No. 4</td>
<td>24.49</td>
<td>14.20</td>
<td>231.00</td>
<td>243.00</td>
<td>16.27</td>
</tr>
<tr>
<td>LATERAL No. 5</td>
<td>41.66</td>
<td>33.62</td>
<td>745.00</td>
<td>750.00</td>
<td>22.16</td>
</tr>
<tr>
<td>LATERAL No. 5A</td>
<td>126.89</td>
<td>72.18</td>
<td>1655.00</td>
<td>1690.00</td>
<td>22.93</td>
</tr>
<tr>
<td>LATERAL No. 6</td>
<td>40.41</td>
<td>22.35</td>
<td>390.00</td>
<td>396.00</td>
<td>17.45</td>
</tr>
<tr>
<td>LATERAL No. 7</td>
<td>84.64</td>
<td>63.66</td>
<td>873.00</td>
<td>905.00</td>
<td>13.71</td>
</tr>
<tr>
<td>LATERAL No. 7A</td>
<td>7.87</td>
<td>5.50</td>
<td>38.00</td>
<td>55.00</td>
<td>6.91</td>
</tr>
<tr>
<td>LATERAL No. 8</td>
<td>67.70</td>
<td>53.45</td>
<td>811.00</td>
<td>827.00</td>
<td>15.17</td>
</tr>
<tr>
<td>LATERAL No. 9</td>
<td>40.06</td>
<td>21.43</td>
<td>350.00</td>
<td>369.00</td>
<td>16.33</td>
</tr>
<tr>
<td>LATERAL No. 10</td>
<td>92.64</td>
<td>72.12</td>
<td>1306.00</td>
<td>1321.00</td>
<td>18.11</td>
</tr>
<tr>
<td>LATERAL No. 11</td>
<td>40.98</td>
<td>27.09</td>
<td>493.00</td>
<td>511.00</td>
<td>18.20</td>
</tr>
<tr>
<td>LATERAL No. 12</td>
<td>58.49</td>
<td>28.65</td>
<td>599.00</td>
<td>628.00</td>
<td>20.91</td>
</tr>
<tr>
<td>LATERAL No. 13</td>
<td>8.26</td>
<td>2.95</td>
<td>134.00</td>
<td>139.00</td>
<td>45.42</td>
</tr>
<tr>
<td>LATERAL No. 14</td>
<td>19.19</td>
<td>11.89</td>
<td>203.00</td>
<td>220.00</td>
<td>17.07</td>
</tr>
<tr>
<td>LATERAL No. 15</td>
<td>29.62</td>
<td>16.50</td>
<td>309.00</td>
<td>274.00</td>
<td>18.73</td>
</tr>
<tr>
<td>TOTAL</td>
<td>916.16</td>
<td>584.79</td>
<td>10569.00</td>
<td>10804.00</td>
<td>19.09</td>
</tr>
<tr>
<td>MAXIMO</td>
<td>197.16</td>
<td>115.94</td>
<td>2057.00</td>
<td>2083.00</td>
<td>45.42</td>
</tr>
<tr>
<td>MINIMO</td>
<td>6.67</td>
<td>2.95</td>
<td>38.00</td>
<td>55.00</td>
<td>6.91</td>
</tr>
</tbody>
</table>
4. PROPUESTA DE MEJORAS EN LA RED DE ESTACIONES

En general todo curso de agua debería ser medido en una estación hidrométrica estratégicamente ubicada. Esto resulta poco práctico por los recursos escasos con se dispone en nuestro país para tal fin y en especial en la zona sur del país. En tal sentido debemos aclarar que la ubicación de las estaciones hidrométricas en la zona de estudio, han sufrido ajustes y reubicaciones en función de las necesidades y requerimiento de información de los proyectos de aprovechamiento de recursos hídricos o de las necesidades de operación y distribución del sistema hidráulico.

4.1. Sistema Hidráulico Mayor Alto Uchusuma

En el Sistema Hidráulico Mayor Alto Uchusuma se cuenta con una cantidad apropiada de estaciones hidrométricas y ubicadas en puntos estratégicos, estas son administradas por SENAMHI y El Proyecto Especial Tacna. Podemos decir que la zona cuenta con un número suficiente de estaciones, especificando que algunos casos requieren mayores trabajos de mantenimiento, calibración y recalibración en forma permanente.

Se recomienda instalar una estación hidrométrica aguas arriba de la Bocatoma Uchusuma, que nos permita registrar el caudal del río del mismo nombre, ya que la estación en esta zona se encuentra sobre el canal derivador.

Otro punto crítico en este sistema es la quebrada Vilavilani, los agricultores emplazados en esta zona en muchos casos triplican el caudal derivado respecto al otorgado en la licencia de uso, esta situación se ha venido presentando por muchas décadas y llegándose estos últimos años a generar ampliaciones de tierras de cultivo en la zona que requieren grandes cantidades de agua, lo cual genera que no se respeten los límites impuestos por la autoridad local de agua. En tal sentido recomendamos se instales una estructura y estación de medición y control automática a fin de monitorear permanentemente el caudal derivado para uso agrícola en esta zona.
4.2. Sistema Hidráulico Menor Bajo Uchusuma

En este sistema no se dispone de ningún aforador, es decir no existen estructuras de medición. Como es ampliamente conocido, es imprescindible contar con estructuras de medición de caudal debidamente calibradas, el agua en esta región es escasa y con mucha razón se debe tener los elementos necesarios para su adecuado uso.

La propuesta va orientada a la instalación medidores tipo Parshall o RBC, los esquemas se muestran en la adjunta así como la vista en planta y perfil. Cabe destacar que los parámetros de diseño deben establecerse con margen de seguridad por arriba y por debajo del caudal asignado a cada lateral que es de $0.50\ m^3/s$. Figura No. 2-27 y 2-28.

![Figura No. 4-1 Esquema de medidor tipo Parshall](image)

Figura No. 4-1 Esquema de medidor tipo Parshall
En la Tabla No. 2-23, se muestra la propuesta de medidores en función a lo que existía antes de la construcción del canal entubado en el tramo estudiado y que fuera ejecutado por el Proyecto Especial Tacna. La propuesta ha sido concordada con los profesionales de la Autoridad Local del Agua ALA Tacna, sobre la base de las necesidades de medición y de contar con información para una mejor administración del agua, tomando como base los requerimientos de información para el cálculo de parámetros de eficiencia.
Esta propuesta ha sido plasmada en planos que se muestran en el Anexo No. 03, uno con los puntos antiguos de medición hidrométricos y otro con la propuesta de medidores tipo Parshall.

Finalmente podemos concluir que todos los aforadores encontrados se encuentran no operativos por dos razones fundamentales, la primera la antigüedad y el estado de los mismo, concreto deteriorado, reglas con graduación no visible y adicionalmente a esto se tiene que la construcción del nuevo canal entubado y la modificación de los puntos de entrega a los laterales hace que las condiciones de flujo hayan cambiado totalmente por lo que estas estructuras ya no funcional, se presenta turbulencia, saltos hidráulicos y otros transitorios hidráulicos que impiden la lectura de miras, por lo que se recomienda la construcción de nuevos aforadores tipo Parshall, los cuales se presentan en plano adjunto.

4.3. Sistema Hidráulico Clase B Aguas Subterráneas El Ayro

En el caso de los pozos de El Ayro, se requiere un sistema de medición preciso para los caudales y niveles piezométricos. Sin duda que este sistema acuífero debiera ser monitoreado inclusive en tiempo real. La propuesta sería la de
implementar un sistema de medición tanto como para descargas como para medición de niveles e inclusive calidad de agua, estos tres elementos mencionados pueden ser establecidos con instrumentos electrónicos y de registro automático centralizado, lo que permitiría un monitoreo en tiempo real.

Figura No. 4-3 Sistema de control automático de calidad de agua subterránea
5. ANEXOS

Anexo No. 1: Esquemas de los Sistemas Hidráulicos Mayor Alto Uchusuma y Menor Bajo Uchusuma, Clase B Aguas Subterráneas El Ayro.

Anexo No. 2: Listado de Estaciones Hidrometeorológicas en la Región Tacna

Anexo No. 3: Mapa de Ubicación de Estaciones Hidrométricas (Sistema Hidráulico Mayor y Menor).

Anexo No. 4: Rol de Riego

Anexo No. 5: Catálogo para Automatización de Monitoreo Pozos Aguas Subterráneas
SEGUNDO PRODUCTO
“LÍNEA BASE DE LOS PARÁMETROS DE EFICIENCIA DE ACUERDO AL PROCEDIMIENTO PROPUESTO POR LA AUTORIDAD NACIONAL DEL AGUA, VALIDANDO SU APLICACIÓN EN LOS SECTORES HIDRÁULICOS MAYOR Y MENOR UCHUSUMA ÁMBITO DE LA AAA CAPLINA OCOÑA, ALA TACNA”
TABLA DE CONTENIDO

1. INTRODUCCION ... 4
 1.1. Antecedentes ... 4
 1.2. Justificación .. 5
 1.3. Objetivo ... 5
 1.4. Metas del Producto ... 6
 1.5. Base Legal .. 6
 1.6. Recopilación de información básica ... 6

2. PROTOCOLO PARA LA DETERMINACION DE LOS
 PARÁMETROS DE EFICIENCIA PARA LOS OPERADORES DE
 INFRAESTRUCTURA HIDRÁULICA .. 7
 2.1. Aspectos Normativos ... 7
 2.2. Parámetro de eficiencia de captación de agua (Pec) 8
 2.3. Parámetro de eficiencia de distribución del Agua (Ped) 8
 2.4. Parámetro de eficiencia de aprovechamiento de Agua (Pea) 9
 2.5. Parámetro de cobertura de medidores (Pcm) 9

3. DETERMINACIÓN DE LOS PARÁMETROS DE EFICIENCIA
 PARA LOS OPERADORES DE INFRAESTRUCTURA 11
 3.1. Parámetro de eficiencia de captación de agua (Pec) 14
 3.2. Parámetro de eficiencia de captación y distribución de agua (Pec y
 Ped) .. 20
 3.3. Parámetro de eficiencia de aprovechamiento de Agua (Pea) 25
 3.4. Parámetro de cobertura de medidores (Pcm) 27

4. CONCLUSIONES Y RECOMENDACIONES 30
 4.1. Conclusiones .. 30
 4.2. Recomendaciones ... 30
LISTA DE FIGURAS

Figura No. 3-1 Punto final de Sistema Hidráulico Mayor Alto Uchusuma 12
Figura No. 3-2 Captación agua Sistema Hidráulico Mayor Alto Uchusuma 13
Figura No. 3-3 Histograma de descargas medias mensuales período 1991 a 2016 15
Figura No. 3-4 Curva de duración de descargas medias mensuales 15
Figura No. 3-5 Variación del Parámetro de Eficiencia de Captación 20
Figura No. 3-6 Distribución de los Bloques de Riego JJUU Valle de Tacna 21
Figura No. 3-7 Bloques de Riego por Comisión de Regantes ... 22
Figura No. 3-8 Variación del Parámetro de Eficiencia de Distribución 24
Figura No. 3-9 Variación del Parámetro de Eficiencia de Captación 24
Figura No. 3-10 Variación del Parámetro de Eficiencia de Aprovechamiento 27

LISTA DE TABLAS

Tabla No. 3-1 Descargas medias mensuales Estación Puente Uchusuma 14
Tabla No. 3-2 Caudales para el período de análisis Estación Puente Uchusuma 16
Tabla No. 3-3 Volúmenes mensuales para el período de análisis Estación Puente Uchusuma ... 16
Tabla No. 3-4 Parámetros de Eficiencia de Captación ... 19
Tabla No. 3-5 Parámetros de Eficiencia de Captación y Distribución 23
Tabla No. 3-6 Parámetros de Eficiencia de Aprovechamiento 26
Tabla No. 3-7 Estaciones en actual operación Sistema Hidráulico Mayor Alto Uchusuma ... 27
Tabla No. 3-8 Parámetro de Cobertura de Medidores Sistema Hidráulico Menor Bajo Uchusuma .. 29
1. INTRODUCCION

1.1. Antecedentes

La Autoridad Nacional del Agua fue creada al amparo de la primera Disposición Complementaria Final de la Ley de Organización y Funciones del Ministerio de Agricultura, aprobada mediante Decreto Legislativo N° 997, como Organismo Público adscrito al Ministerio de Agricultura responsable de dictar normas y establecer procedimientos para la gestión integrada y sostenible de los recursos hídricos. Tiene personería jurídica de derecho público interno y constituye un pliego presupuestal.

La Autoridad Nacional del Agua es el ente rector y la máxima autoridad técniconormativa del Sistema Nacional de Gestión de los Recursos Hídricos. Es responsable del funcionamiento de dicho sistema en el marco de la Ley N° 29338 – Ley de Recursos Hídricos.

La indicada norma establece que la gestión integrada de los recursos hídricos se sustenta en su aprovechamiento eficiente y su conservación, incentivando el desarrollo de una cultura de uso eficiente entre los usuarios y operadores estableciendo que los titulares de derecho de uso tengan como una de sus obligaciones utilizar el agua con la mayor eficiencia técnica y económica.

De acuerdo al Reglamento de Organización y Funciones de la Autoridad Nacional del Agua corresponde a la Dirección de Administración de Recursos Hídricos, elaborar, proponer y supervisar la implementación de normas en materia de distribución multisectorial y establecimiento de parámetros de eficiencia.

La Dirección de Administración de Recursos Hídricos, ha elaborado una propuesta de norma “Lineamientos para la determinación y establecimiento de los parámetros de eficiencia”, en la que se establecen los procedimientos para determinar y establecer los parámetros de eficiencia para los operadores de infraestructura hidráulica y usuarios de agua.
1.2. Justificación

La Ley de Recursos Hídricos, establece el principio de eficiencia, el cual establece que la gestión integrada de los recursos hídricos se sustenta en el aprovechamiento eficiente y su conservación, incentivando el desarrollo de una cultura de uso eficiente entre los usuarios y operadores.

El Reglamento de la Ley de Recursos Hídricos, en el Capítulo IX, De los Parámetros de Eficiencia para el Aprovechamiento del Recurso Hídrico, establece que los Parámetros de Eficiencia para el Aprovechamiento de los Recursos Hídricos, son los valores necesarios que la Autoridad Nacional del Agua deberá establecer para determinar de forma objetiva, si los usuarios de agua y los operadores de infraestructura hidráulica, hacen uso eficiente del recurso hídrico. Los criterios a considerar para el establecimiento y evaluación de los Parámetros de Eficiencia son determinados por la Autoridad Nacional del Agua.

En base a la propuesta de norma elaborada “Lineamientos para la determinación y establecimiento de los parámetros de eficiencia”, es necesario validar su aplicabilidad, por lo que de acuerdo al procedimiento establecido debe determinarse la línea de base de los parámetros de eficiencia de distintos sectores hidráulicos en forma representativa en la zona sur, norte y centro del país.

1.3. Objetivo

Determinar la línea base de los parámetros de eficiencia de acuerdo al procedimiento propuesto por la Autoridad Nacional del Agua validando su aplicación en los sectores hidráulicos mayor y menor Uchusuma ámbito de la AAA Caplina Ocoña, ALA Tacna.
1.4. Metas del Producto

i) Determinación de los parámetros de eficiencia para los operadores de infraestructura en el sector hidráulico mayor, año 2015 y 2016 a la fecha.

ii) Determinación de los parámetros de eficiencia para los operadores de infraestructura en el sector hidráulico menor y subsectores hidráulicos, año 2015 y 2016 a la fecha.

1.5. Base Legal

La base legal para la elaboración del presente trabajo se basa en:

- Resolución Jefatural N° 107-2016-ANA, 02 de mayo 2016. Dispone la pre-publicación del documento denominado “Lineamientos para Determinar y Establecer los Parámetros de Eficiencia para el Aprovechamiento de los Recursos Hídricos”.

1.6. Recopilación de información básica

Para efectos de desarrollo del presente trabajo se tomó en cuenta las siguientes instituciones como fuentes de información:
2. PROTOCOLO PARA LA DETERMINACION DE LOS PARAMETROS DE EFICIENCIA PARA LOS OPERADORES DE INFRAESTRUCTURA HIDRÁULICA

2.1. Aspectos Normativos

La Resolución Jefatural No. 107-2016-ANA del 02 de mayo 2016, dispone la pre-publicación del documento denominado “Lineamientos para Determinar y Establecer los Parámetros de Eficiencia para el Aprovechamiento de los Recursos Hídricos”, en el portal web de la Autoridad Nacional del Agua: www.ANA.GOB.PE, para recepción de opiniones y sugerencias.

Dicha resolución jefatural incluye los citados lineamientos, los mismos que incluyen el Título I Generalidades, Título II Parámetros de eficiencia para el aprovechamiento del recurso hídrico, Título III Procedimiento para establecer los parámetros de eficiencia, Título IV Programa de uso eficiente, Anexo II Protocolo para la determinación de los parámetros de eficiencia para los operadores de infraestructura hidráulica, Anexo III Protocolo para la determinación de los parámetros de eficiencia para los usuarios de agua.

El protocolo incluido en el anexo de la Resolución Jefatural N° 107-2016-ANA, establece 4 parámetros de evaluación: de eficiencia de captación de agua, de eficiencia de distribución de agua, de eficiencia de aprovechamiento de agua y de cobertura de medidores.
2.2. Parámetro de eficiencia de captación de agua (Pec)

Este parámetro, permite analizar y valorar los volúmenes de agua captados y programados, estableciendo la relación entre el volumen de agua captado en la fuente natural o infraestructura hidráulica mayor y el volumen programado en el Plan de aprovechamiento de disponibilidad hídrica, que establece el volumen requerido para atender las demandas de los usuarios de agua ubicados en el sub sector hidráulico, en la oportunidad y cantidad requerida.

Se evalúa con la siguiente expresión:

\[
Pec = \frac{V_{cm}}{V_{pm}}
\]

Donde:

- \(V_{cm}\): Volumen de agua captado en el subsector hidráulico por mes (m\(^3\))
- \(V_{pm}\): Volumen de agua programado para el mes, establecido en el PADH (m\(^3\))

2.3. Parámetro de eficiencia de distribución del Agua (Ped)

Este parámetro, permite analizar y valorar las pérdidas de agua en el proceso de suministro de agua hacia los usuarios de agua que la reciben, en un subsector hidráulico. Es la relación de la sumatoria de los volúmenes de agua distribuidos en los bloques de riego y el volumen captado en el subsector hidráulico.

Se calcula según la siguiente formulación:

\[
Ped = \frac{V_{b}}{V_{c}}
\]

Donde:

- \(V_{b}\): Volumen agua distribuidos en el bloque de riego en el mes (m\(^3\))
- \(V_{c}\): Volumen de agua captado (m\(^3\))
2.4. Parámetro de eficiencia de aprovechamiento de Agua (Pea)

Este parámetro permite analizar y validar la relación de los volúmenes de agua facturados y los utilizados. Tiene como objetivo optimizar los volúmenes de agua utilizados vinculados al costo por el servicio de suministro, con la finalidad de cubrir los costos que demanda el suministro del agua permitiendo desarrollar la infraestructura hidráulica.

Es la relación de los volúmenes de agua que ha pagado el usuario al operador en el subsector hidráulico y el volumen de agua utilizado.

Se calcula según la siguiente formulación:

$$\text{Pea} = \frac{V_f}{V_b}$$

Donde:

- V_f : Volumen de agua facturado (m3)
- V_b : Volumen de agua distribuido en el bloque (m3)

2.5. Parámetro de cobertura de medidores (Pcm)

Este parámetro permite validar la existencia de medidores que precisarán el levantamiento de información para un seguimiento adecuado de las variables que intervienen en la eficiencia, reconociendo si existen en el subsector hidráulico suficientes estructuras de medición del agua, que permita una mejor distribución y la entrega de agua a los usuarios en la cantidad requerida.

La cobertura de medidores es la relación del número total de medidores operativos y el número total de puntos de medición de la red hidrométrica de captación y distribución.

Se calcula según:

$$\text{Pcm} = \frac{N_m}{N_{rh}}$$
Donde:

Nm : Número total de medidores en funcionamiento

Nrh : Número total de puntos de medición de la red hidrométrica de Captación y distribución del agua.
3. DETERMINACIÓN DE LOS PARÁMETROS DE EFICIENCIA PARA LOS OPERADORES DE INFRAESTRUCTURA

Para el caso de operador hidráulico Proyecto Especial Tacna (PET), procederemos al cálculo de estos parámetros utilizando las descargas registradas en el punto de captación ubicado en la bocatoma Uchusuma, la misma que capta y deriva el agua del rio Uchusuma mediante un canal del mismo nombre que recorre territorio Peruano, luego ingresa a territorio Chileno para finalmente retornar a territorio peruano y trasvasar el agua por el túnel Huaylillas Sur hacia la quebrada Vilavilani.

En la parte baja el agua es nuevamente captada en la bocatoma Chuschuco y es conducida hacia los reservorios de Cerro Blanco donde aguas abajo se dispone de estación de aforo y estructura de partición de agua denominada Partidor Cerro Blanco, la cual distribuye el agua tanto para uso poblacional como agrario, como se muestra en la Figura No. 3-1. En la Figura No. 3-2, se muestra el sistema de la parte altoandina hasta el túnel Huaylillas Sur.

Se recopiló información de registro de caudales y volúmenes en los puntos de interés desde enero de 2014 hasta mayo 2016, con dicha información se procedió a determinar los parámetros de eficiencia correspondientes.

Asimismo debemos indicar que en el sistema hidráulico menor Uchusuma, no se dispone de medidores de flujo en ninguno de los laterales. El caudal que se entrega al bloque de riego Uchusuma se calcula en función de las descargas registradas en la estación Piedras Blancas. Del caudal registrado en esta estación el 50% se destina para uso poblacional (EPS Tacna) y el otro 50% para la agricultura aguas abajo. Debemos acotar que de este segundo 50%, la mitad se destina para el sector Uchusuma correspondiendo entonces históricamente que de la descarga total registrada en la estación Piedras Blancas para el bloque de riego Uchusuma le asignan el 25%, el mismo que se distribuye en forma consecutiva a cada lateral de riego según mitas establecidas con un caudal constante de acuerdo a lo registrado en cabecera de bloque.
Figura No. 3-1 Punto final de Sistema Hidráulico Mayor Alto Uchusuma
Figura No. 3-2 Captación agua Sistema Hidráulico Mayor Alto Uchusuma
3.1. Parámetro de eficiencia de captación de agua (Pec)

De acuerdo al protocolo establecido por ANA, para la determinación del parámetro de eficiencia de captación de agua en la infraestructura Mayor Alto Uchusuma, se tomará como punto de captación registrado la estación Puente Uchusuma, esta estación registra la totalidad del agua captada. En la Tabla No. 3-1 se muestra las descargas medias mensuales registradas en la Estación Puente Uchusuma. En las Figuras No. 3-3 y 3-4 se muestra el histograma y curva de duración respectiva.

Tabla No. 3-1 Descargas medias mensuales Estación Puente Uchusuma

Las descargas en esta estación operada por el Proyecto Especial Tacna desde julio del año 1991, presentan valores medios mensuales entre 1,394 m³/s y 1,087 m³/s con una media multianual de 1,186 m³/s. Asimismo se han registrado medias máximas multianuales captadas de 1,959 m³/s y mínimas de 0,433 m³/s.
Figura No. 3-3 Histograma de descargas medias mensuales período 1991 a 2016

Figura No. 3-4 Curva de duración de descargas medias mensuales
Para la evaluación tomaremos las descargas medias mensuales de enero del año 2014 al mes de mayo de 2016, es decir un año más que lo requerido en los términos de referencia, tal como se muestra en la Tabla No. 3-2. En la Tabla No. 3-3 se muestran los volúmenes en m3.

Tabla No. 3-2 Caudales para el período de análisis Estación Puente Uchusuma

<table>
<thead>
<tr>
<th>MES</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENE</td>
<td>1.274</td>
<td>1.231</td>
<td>1.228</td>
</tr>
<tr>
<td>FEB</td>
<td>1.583</td>
<td>1.165</td>
<td>1.497</td>
</tr>
<tr>
<td>MAR</td>
<td>1.143</td>
<td>1.397</td>
<td>1.123</td>
</tr>
<tr>
<td>ABR</td>
<td>1.290</td>
<td>0.954</td>
<td>1.399</td>
</tr>
<tr>
<td>MAY</td>
<td>1.162</td>
<td>0.820</td>
<td>1.250</td>
</tr>
<tr>
<td>JUN</td>
<td>1.230</td>
<td>1.290</td>
<td></td>
</tr>
<tr>
<td>JUL</td>
<td>1.155</td>
<td>1.166</td>
<td></td>
</tr>
<tr>
<td>AGO</td>
<td>1.054</td>
<td>0.865</td>
<td></td>
</tr>
<tr>
<td>SEP</td>
<td>1.179</td>
<td>1.097</td>
<td></td>
</tr>
<tr>
<td>OCT</td>
<td>1.192</td>
<td>1.150</td>
<td></td>
</tr>
<tr>
<td>NOV</td>
<td>1.353</td>
<td>1.130</td>
<td></td>
</tr>
<tr>
<td>DIC</td>
<td>1.223</td>
<td>1.206</td>
<td></td>
</tr>
</tbody>
</table>

Tabla No. 3-3 Volúmenes mensuales para el período de análisis Estación Puente Uchusuma

<table>
<thead>
<tr>
<th>MES</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENE</td>
<td>3412800.00</td>
<td>3296246.40</td>
<td>3289334.40</td>
</tr>
<tr>
<td>FEB</td>
<td>3829939.20</td>
<td>2818886.40</td>
<td>3562951.35</td>
</tr>
<tr>
<td>MAR</td>
<td>3060374.40</td>
<td>3742934.40</td>
<td>3007843.20</td>
</tr>
<tr>
<td>ABR</td>
<td>3342816.00</td>
<td>2471904.00</td>
<td>3562951.35</td>
</tr>
<tr>
<td>MAY</td>
<td>3112992.00</td>
<td>2195078.40</td>
<td>3348000.00</td>
</tr>
<tr>
<td>JUN</td>
<td>3187728.00</td>
<td>3344630.40</td>
<td>3120219.20</td>
</tr>
<tr>
<td>JUL</td>
<td>3094848.00</td>
<td>3123014.40</td>
<td></td>
</tr>
<tr>
<td>AGO</td>
<td>2822083.20</td>
<td>2317668.00</td>
<td></td>
</tr>
<tr>
<td>SEP</td>
<td>3055190.40</td>
<td>2843769.60</td>
<td></td>
</tr>
<tr>
<td>OCT</td>
<td>3192134.40</td>
<td>3081196.80</td>
<td></td>
</tr>
<tr>
<td>NOV</td>
<td>3506803.20</td>
<td>2928458.94</td>
<td></td>
</tr>
<tr>
<td>DIC</td>
<td>3275596.80</td>
<td>3231187.20</td>
<td></td>
</tr>
</tbody>
</table>

Según el Plan de Cultivo y Riego a Nivel de Junta de Usuarios, se tiene los siguientes valores mensuales asignados para el período de análisis, cabe destacar que dicho plan corresponde al período 2011 – 2012. Posterior a este período no se ha elaborado otro plan, por lo que en coordinación con los
directivos de la Junta de Usuarios y Autoridad Local de Agua, validamos dichos datos y los utilizamos para los fines del presente estudio.

En la Tabla No. 3-4 se muestra el cálculo del parámetro de eficiencia de captación para el periodo enero 2014 a mayo 2016. Se puede apreciar que los valores del parámetro de eficiencia de captación (Pec) varían de 1,41 a 0,76 con una media de 1,14 y una desviación estándar de 0,17. En tal sentido observamos que dichos valores están en gran parte fuera del rango establecido como aceptable en la Resolución Jefatural N° 107-2016-ANA que indica de 0,90 a 1,00.

Se ha encontrado que solo 2 de 29 valores calculados (período enero 2014 a mayo 2016) se encuentran en el rango de aceptables según lo propuesto inicialmente, asimismo la mayor parte de valores calculados de este parámetro a nivel mensual son superiores a 1,00 lo que denota que los volúmenes de captación son superiores a los volúmenes programados. La explicación para esta situación sería que en la quebrada Vilavilani se tienen una serie de captaciones de agua para uso agrícola, en las cuales la cantidad de agua extraída es muy superior a lo autorizado, se tiene referencia que los valores van hasta un 300% adicional. Este volumen adicional se emplea en las ampliaciones indiscriminadas de terrenos de cultivo que se tiene en la zona, lo que amerita una evaluación real y actualizada por parte de la autoridad local del agua, con respaldo de la AAA Caplina – Ocoña y la propia ANA.

El registro de descargas por parte del operador hidráulico PET, se viene dando en condiciones adecuadas, las estaciones funcionan correctamente y están estratégicamente ubicadas en el Sector Hidráulico Mayor Uchusuma.

Es una tarea de administración y gestión de recursos hídricos por parte de la Autoridad Local del Agua, hacer cumplir los volúmenes de extracción indicados en las licencias autorizadas en la quebrada Vilavilani, a fin de que el parámetro de eficiencia sea determinado en forma correcta.

El parámetro determinado anida un error en su cálculo al considerar volúmenes de captación mayores a los programados, esto con la finalidad de suplir las
extracciones no autorizadas, adicionalmente un afectado directo con esta situación es la EPS Tacna y la población tacneña que tiene que asumir costos operativos mayores para suplir dichas extracciones no autorizadas. Esto se traduce en una mayor extracción de aguas subterráneas en la zona de El Ayro, agua que debe ser explotada solo en cantidades necesarias en épocas de estiaje y preferentemente para uso poblacional.

En tal sentido se insta a la autoridad competente a tomar las acciones del caso para evitar esta situación de uso indebido y desmedido del agua en esta zona donde la escasez de agua es un problema recurrente no solo por la baja disponibilidad sino también por la mala calidad del agua resultante de procesos de contaminación natural por el vulcanismo de la zona y en algunos casos por la contaminación inducida producto de la actividad minera.

Según los resultados obtenidos, observamos que los rangos de aceptación de este parámetro propuestos por ANA no son cumplidos por las causales indicadas, pero de todos modos podemos recomendar ampliar dicho rangos sustentado en toda la problemática que se nos presenta en el tema de administración y gestión de recursos hídricos, no solo en esta región sino también en todo el país.
CAPTACION PUENTE UCHUSUMA

<table>
<thead>
<tr>
<th>AÑO</th>
<th>MES</th>
<th>Q (m³/s)</th>
<th>V (m³)</th>
<th>V Riego (m³)</th>
<th>V Población (m³)</th>
<th>TOTAL (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>ENE</td>
<td>1.274</td>
<td>3412800.00</td>
<td>541728.00</td>
<td>2656972.80</td>
<td>3198700.80</td>
</tr>
<tr>
<td></td>
<td>FEB</td>
<td>1.583</td>
<td>3829939.20</td>
<td>593521.52</td>
<td>2501452.80</td>
<td>3037274.32</td>
</tr>
<tr>
<td></td>
<td>MAR</td>
<td>1.143</td>
<td>306374.40</td>
<td>965671.20</td>
<td>2437344.00</td>
<td>3403015.20</td>
</tr>
<tr>
<td></td>
<td>ABR</td>
<td>1.290</td>
<td>3342816.00</td>
<td>682214.40</td>
<td>2571264.00</td>
<td>3253478.40</td>
</tr>
<tr>
<td></td>
<td>MAY</td>
<td>1.162</td>
<td>3112992.00</td>
<td>537667.20</td>
<td>2105222.40</td>
<td>2642889.60</td>
</tr>
<tr>
<td></td>
<td>JUN</td>
<td>1.230</td>
<td>3187728.00</td>
<td>440251.20</td>
<td>1928448.00</td>
<td>2368699.20</td>
</tr>
<tr>
<td></td>
<td>JUL</td>
<td>1.155</td>
<td>3094848.00</td>
<td>516931.20</td>
<td>1925769.60</td>
<td>2442700.80</td>
</tr>
<tr>
<td></td>
<td>AGO</td>
<td>1.054</td>
<td>2822083.20</td>
<td>415864.80</td>
<td>1882915.20</td>
<td>2298780.00</td>
</tr>
<tr>
<td></td>
<td>SEP</td>
<td>1.179</td>
<td>3055190.40</td>
<td>462456.00</td>
<td>1886976.00</td>
<td>2349432.00</td>
</tr>
<tr>
<td></td>
<td>OCT</td>
<td>1.192</td>
<td>3192134.40</td>
<td>508561.20</td>
<td>1992729.60</td>
<td>2501290.80</td>
</tr>
<tr>
<td></td>
<td>NOV</td>
<td>1.353</td>
<td>3506803.20</td>
<td>516888.00</td>
<td>2037312.00</td>
<td>2554200.00</td>
</tr>
<tr>
<td></td>
<td>DIC</td>
<td>1.223</td>
<td>3275596.80</td>
<td>549072.00</td>
<td>2105222.40</td>
<td>2654294.40</td>
</tr>
<tr>
<td>2015</td>
<td>ENE</td>
<td>1.231</td>
<td>3296246.40</td>
<td>541728.00</td>
<td>2656972.80</td>
<td>3198700.80</td>
</tr>
<tr>
<td></td>
<td>FEB</td>
<td>1.165</td>
<td>2818886.40</td>
<td>535821.52</td>
<td>2501452.80</td>
<td>3037274.32</td>
</tr>
<tr>
<td></td>
<td>MAR</td>
<td>1.397</td>
<td>3749393.40</td>
<td>965671.20</td>
<td>2437344.00</td>
<td>3403015.20</td>
</tr>
<tr>
<td></td>
<td>ABR</td>
<td>0.954</td>
<td>2471904.00</td>
<td>682214.40</td>
<td>2571264.00</td>
<td>3253478.40</td>
</tr>
<tr>
<td></td>
<td>MAY</td>
<td>0.820</td>
<td>2195078.40</td>
<td>537667.20</td>
<td>2105222.40</td>
<td>2642889.60</td>
</tr>
<tr>
<td></td>
<td>JUN</td>
<td>1.290</td>
<td>3344630.40</td>
<td>440251.20</td>
<td>1928448.00</td>
<td>2368699.20</td>
</tr>
<tr>
<td></td>
<td>JUL</td>
<td>1.166</td>
<td>3192134.40</td>
<td>516931.20</td>
<td>1925769.60</td>
<td>2442700.80</td>
</tr>
<tr>
<td></td>
<td>AGO</td>
<td>0.865</td>
<td>2317680.00</td>
<td>516888.00</td>
<td>2037312.00</td>
<td>2554200.00</td>
</tr>
<tr>
<td></td>
<td>SEP</td>
<td>1.097</td>
<td>2843769.60</td>
<td>462456.00</td>
<td>1886976.00</td>
<td>2349432.00</td>
</tr>
<tr>
<td></td>
<td>OCT</td>
<td>1.150</td>
<td>3081196.80</td>
<td>508561.20</td>
<td>1992729.60</td>
<td>2501290.80</td>
</tr>
<tr>
<td></td>
<td>NOV</td>
<td>1.130</td>
<td>2928458.94</td>
<td>516888.00</td>
<td>2037312.00</td>
<td>2554200.00</td>
</tr>
<tr>
<td></td>
<td>DIC</td>
<td>1.206</td>
<td>3231187.20</td>
<td>549072.00</td>
<td>2105222.40</td>
<td>2654294.40</td>
</tr>
<tr>
<td>2016</td>
<td>ENE</td>
<td>1.228</td>
<td>3289334.40</td>
<td>541728.00</td>
<td>2656972.80</td>
<td>3198700.80</td>
</tr>
<tr>
<td></td>
<td>FEB</td>
<td>1.497</td>
<td>3620541.35</td>
<td>535821.52</td>
<td>2501452.80</td>
<td>3037274.32</td>
</tr>
<tr>
<td></td>
<td>MAR</td>
<td>1.123</td>
<td>3007843.20</td>
<td>965671.20</td>
<td>2437344.00</td>
<td>3403015.20</td>
</tr>
<tr>
<td></td>
<td>ABR</td>
<td>1.399</td>
<td>3626208.00</td>
<td>682214.40</td>
<td>2571264.00</td>
<td>3253478.40</td>
</tr>
<tr>
<td></td>
<td>MAY</td>
<td>1.250</td>
<td>3348000.00</td>
<td>537667.20</td>
<td>2105222.40</td>
<td>2642889.60</td>
</tr>
<tr>
<td></td>
<td>JUN</td>
<td>1.206</td>
<td>3231187.20</td>
<td>549072.00</td>
<td>2105222.40</td>
<td>2654294.40</td>
</tr>
<tr>
<td></td>
<td>JUL</td>
<td>1.130</td>
<td>2928458.94</td>
<td>516888.00</td>
<td>2037312.00</td>
<td>2554200.00</td>
</tr>
<tr>
<td></td>
<td>AGO</td>
<td>415864.80</td>
<td>1882915.20</td>
<td>2298780.00</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEP</td>
<td>462456.00</td>
<td>1886976.00</td>
<td>2349432.00</td>
<td>1.21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OCT</td>
<td>508561.20</td>
<td>1992729.60</td>
<td>2501290.80</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOV</td>
<td>516888.00</td>
<td>2037312.00</td>
<td>2554200.00</td>
<td>1.27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIC</td>
<td>549072.00</td>
<td>2105222.40</td>
<td>2654294.40</td>
<td>1.22</td>
<td></td>
</tr>
</tbody>
</table>

AGUA PROGRAMADA PARA USUARIOS

<table>
<thead>
<tr>
<th>Pec</th>
<th>PROMEDIO</th>
<th>MAXIMO</th>
<th>MINIMO</th>
<th>DESV.STD.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.14</td>
<td>1.41</td>
<td>0.76</td>
<td>0.17</td>
</tr>
</tbody>
</table>

a Obtenido de registros históricos a nivel diario del Proyecto Especial Tacna

b Plan de Cultivo y Riego a Nivel de Junta de Usuarios

c Plan Maestro Optimizado Actualizado 2013 - 2043

Tabla No. 3-4 Parámetros de Eficiencia de Captación
Figura No. 3-5 Variación del Parámetro de Eficiencia de Captación

3.2. Parámetro de eficiencia de captación y distribución de agua (Pec y Ped)

El parámetro de eficiencia de distribución de agua en el Sistema Uchusuma requiere establecer los valores mensuales del volumen de agua distribuido en el bloque de riego en el mes (m3) y el volumen de agua captado (m3). Asimismo se requiere determinar el parámetro de eficiencia de captación a nivel de bloque de riego.

En las Figuras No. 3-6 y 3-7 se muestra la distribución de los bloques de riego en valle de Tacna, el mismo que incluye el bloque Uchusuma materia del presente trabajo. Mayor detalle y precisión mostramos en el Anexo No.1.
Figura No. 3-6 Distribución de los Bloques de Riego JJUU Valle de Tacna
En el bloque Uchusuma se tiene un total de 17 laterales de riego, los cuales riegan en forma consecutiva y con el mismo caudal. Con la información disponible y facilitada por la Junta de Usuarios Tacna, se procedió a determinar en forma mensual los Parámetros de Eficiencia de Captación (Pec) y Distribución (Ped), mostrándose los resultados en la Tabla No. 3-5. Asimismo en las Figuras No. 3-8 y 3-9 se muestra la variación de dichos parámetros en forma mensual respecto a los límites permissibles establecidos por ANA.
Tabla No. 3-5 Parámetros de Eficiencia de Captación y Distribución

<table>
<thead>
<tr>
<th>AÑO</th>
<th>MES</th>
<th>(a) Vb (m(^3))</th>
<th>(b) Vc (m(^3))</th>
<th>(c) Vf (m(^3))</th>
<th>Pec</th>
<th>Ped</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>ENE</td>
<td>669600.00</td>
<td>774750.00</td>
<td>432000.00</td>
<td>1.43</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>FEB</td>
<td>617321.50</td>
<td>720250.00</td>
<td>417000.00</td>
<td>1.34</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>MAR</td>
<td>504886.00</td>
<td>562464.00</td>
<td>422000.00</td>
<td>0.58</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>ABR</td>
<td>336667.00</td>
<td>658250.00</td>
<td>321000.00</td>
<td>0.96</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>MAY</td>
<td>375272.00</td>
<td>594500.00</td>
<td>452000.00</td>
<td>1.11</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>JUN</td>
<td>465942.00</td>
<td>638250.00</td>
<td>450000.00</td>
<td>1.45</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>JUL</td>
<td>334800.00</td>
<td>604750.00</td>
<td>452000.00</td>
<td>1.17</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>AGO</td>
<td>349916.00</td>
<td>461250.00</td>
<td>537824.75</td>
<td>1.11</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td>SEP</td>
<td>401760.00</td>
<td>555984.00</td>
<td>533491.88</td>
<td>1.20</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>OCT</td>
<td>462528.00</td>
<td>626745.60</td>
<td>584106.00</td>
<td>1.23</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>NOV</td>
<td>463254.00</td>
<td>622728.00</td>
<td>616481.63</td>
<td>1.20</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>DIC</td>
<td>516120.00</td>
<td>649512.00</td>
<td>540202.50</td>
<td>1.18</td>
<td>0.79</td>
</tr>
<tr>
<td>2015</td>
<td>ENE</td>
<td>459397.50</td>
<td>531000.00</td>
<td>482577.75</td>
<td>0.98</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>FEB</td>
<td>455903.00</td>
<td>581212.80</td>
<td>402386.50</td>
<td>1.08</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>MAR</td>
<td>544558.50</td>
<td>794145.60</td>
<td>445393.63</td>
<td>0.82</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>ABR</td>
<td>476082.00</td>
<td>471096.00</td>
<td>339462.63</td>
<td>0.69</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>MAY</td>
<td>449520.00</td>
<td>393724.80</td>
<td>284541.63</td>
<td>0.73</td>
<td>1.14</td>
</tr>
<tr>
<td></td>
<td>JUN</td>
<td>338159.50</td>
<td>626500.00</td>
<td>263907.88</td>
<td>1.42</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>JUL</td>
<td>401760.00</td>
<td>618000.00</td>
<td>224106.00</td>
<td>1.20</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>AGO</td>
<td>401760.00</td>
<td>461250.00</td>
<td>537824.75</td>
<td>1.11</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>SEP</td>
<td>443543.00</td>
<td>555984.00</td>
<td>533491.88</td>
<td>1.20</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>OCT</td>
<td>462528.00</td>
<td>626745.60</td>
<td>584106.00</td>
<td>1.23</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>NOV</td>
<td>463254.00</td>
<td>622728.00</td>
<td>616481.63</td>
<td>1.20</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>DIC</td>
<td>516120.00</td>
<td>649512.00</td>
<td>540202.50</td>
<td>1.18</td>
<td>0.79</td>
</tr>
<tr>
<td>2016</td>
<td>ENE</td>
<td>434130.64</td>
<td>555843.75</td>
<td>482577.75</td>
<td>1.03</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>FEB</td>
<td>430828.34</td>
<td>681843.75</td>
<td>402386.50</td>
<td>1.27</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>MAR</td>
<td>514607.78</td>
<td>411468.75</td>
<td>445393.63</td>
<td>0.43</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>ABR</td>
<td>449897.49</td>
<td>515812.50</td>
<td>339462.63</td>
<td>0.76</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>MAY</td>
<td>424796.40</td>
<td>485625.00</td>
<td>284541.63</td>
<td>0.90</td>
<td>0.87</td>
</tr>
</tbody>
</table>

\(a,b,c \) Obtener de registros de la JJUU Tacna

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vb</td>
<td>Vol. Agua Distribuida en el Bloque</td>
<td>PROMEDIO</td>
<td>1.08</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>Vc</td>
<td>Vol. Agua Captado</td>
<td>MAXIMO</td>
<td>1.45</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>Vf</td>
<td>Vol. Agua Facturado</td>
<td>MINIMO</td>
<td>0.43</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figura No. 3-8 Variación del Parámetro de Eficiencia de Distribución

Figura No. 3-9 Variación del Parámetro de Eficiencia de Captación
3.3. Parámetro de eficiencia de aprovechamiento de Agua (Pea)

Para la determinación de este parámetro, se ha recurrido a la Junta de Usuarios Tacna, a fin de recopilar la información necesaria. Se obtuvo los volúmenes facturados desde enero 2014 hasta mayo 2016.

Con esta información se calculó los parámetros mensuales de eficiencia de aprovechamiento mostrados en la Tabla No. 3-6, obteniéndose como valor promedio 1,00, un máximo de 1,54 para el mes de agosto 2014 y un mínimo de 0,56 para julio 2015. Asimismo en la Figura No. 4-10 se muestra la variación de dichos parámetros.
<table>
<thead>
<tr>
<th>AÑO</th>
<th>MES</th>
<th>(a) Vb (m(^3))</th>
<th>(b) Vc (m(^3))</th>
<th>(c) Vf (m(^3))</th>
<th>Pea</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENE</td>
<td>669600.00</td>
<td>774750.00</td>
<td>432000.00</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>FEB</td>
<td>617321.50</td>
<td>720250.00</td>
<td>417000.00</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>MAR</td>
<td>504886.00</td>
<td>562464.00</td>
<td>422000.00</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>ABR</td>
<td>336667.00</td>
<td>658250.00</td>
<td>321000.00</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>MAY</td>
<td>375272.00</td>
<td>594500.00</td>
<td>452000.00</td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td>JUN</td>
<td>465942.00</td>
<td>638250.00</td>
<td>450000.00</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>JUL</td>
<td>334800.00</td>
<td>604750.00</td>
<td>452000.00</td>
<td>1.35</td>
<td></td>
</tr>
<tr>
<td>AGO</td>
<td>349916.00</td>
<td>461250.00</td>
<td>537824.75</td>
<td>1.54</td>
<td></td>
</tr>
<tr>
<td>SEP</td>
<td>401760.00</td>
<td>555984.00</td>
<td>533491.88</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>OCT</td>
<td>462528.00</td>
<td>626745.60</td>
<td>584106.00</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td>NOV</td>
<td>463254.00</td>
<td>622728.00</td>
<td>616481.63</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>DIC</td>
<td>516120.00</td>
<td>649512.00</td>
<td>540202.50</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENE</td>
<td>459397.50</td>
<td>531000.00</td>
<td>482577.75</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>FEB</td>
<td>455903.00</td>
<td>581212.80</td>
<td>402386.50</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>MAR</td>
<td>544558.50</td>
<td>794145.60</td>
<td>445393.63</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>ABR</td>
<td>476082.00</td>
<td>471096.00</td>
<td>339462.63</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>MAY</td>
<td>449520.00</td>
<td>393724.80</td>
<td>284541.63</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>JUN</td>
<td>338159.50</td>
<td>626500.00</td>
<td>263907.88</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>JUL</td>
<td>401760.00</td>
<td>618000.00</td>
<td>224106.00</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>AGO</td>
<td>401760.00</td>
<td>461250.00</td>
<td>537824.75</td>
<td>1.34</td>
<td></td>
</tr>
<tr>
<td>SEP</td>
<td>443543.00</td>
<td>555984.00</td>
<td>533491.88</td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td>OCT</td>
<td>462528.00</td>
<td>626745.60</td>
<td>584106.00</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td>NOV</td>
<td>463254.00</td>
<td>622728.00</td>
<td>616481.63</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>DIC</td>
<td>516120.00</td>
<td>649512.00</td>
<td>540202.50</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENE</td>
<td>434130.64</td>
<td>555843.75</td>
<td>482577.75</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>FEB</td>
<td>430828.34</td>
<td>681843.75</td>
<td>402386.50</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>MAR</td>
<td>514607.78</td>
<td>411468.75</td>
<td>445393.63</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>ABR</td>
<td>449897.49</td>
<td>515812.50</td>
<td>339462.63</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>MAY</td>
<td>424796.40</td>
<td>485625.00</td>
<td>284541.63</td>
<td>0.67</td>
<td></td>
</tr>
</tbody>
</table>

Obtenido de registros de la JUU Tacna

Vb : Vol. Agua Distribuida en el Bloque

Vc : Vol. Agua Captado

Vf : Vol. Agua Facturado

Dep. STD. : Desviación Estándar

PROMEDIO : 1.00

MAXIMO : 1.54

MINIMO : 0.56

DESV.STD. : 0.27
3.4. Parámetro de cobertura de medidores (Pcm)

El análisis lo realizamos considerando el Sistema Hidráulico Mayor Alto Uchusuma y Menor Bajo Uchusuma. En el caso del sistema Mayor Alto Uchusuma, contamos con una red de estaciones hidrométricas de larga data, donde se registran las descargas en los puntos de interés.

En la Tabla No. 3-7 se muestran las ocho estaciones de registro de descargas en el sistema desde la bocatoma Uchusuma hasta el partidor Cerro Blanco, dichas estaciones vienen operando la de más larga serie desde enero de 1939 correspondiendo a la estación Piedras Blancas.
Para evaluar el parámetro de cobertura de medidores tomaremos en cuenta estas 8 estaciones en funcionamiento como valor $Nm=8$, siendo el número total de puntos de medición de la red hidrométrica de captación y distribución también igual $Nrh=8$. Esto denota que en el Sistema Hidráulico Mayor Alto Uchusuma, podemos considerar que este parámetro de cobertura de medidores $Pcm=1,00$, siendo aceptable entre 0,95 y 1,00.

Definitivamente, podemos mencionar que la cobertura de medidores en este sistema Uchusuma Alto es adecuado, se tiene una cobertura eficiente de medidores de flujo.

Por el contrario en el Sistema Hidráulico Menor Bajo Uchusuma, la situación cambia radicalmente, a nivel de laterales de distribución la situación es compleja, en la actualidad las estructuras de medición de caudales han sufrido alteraciones radicales por la construcción de un nuevo canal entubado tal como se muestra en las fotografías del Anexo No. 2, en todos los casos la entrega del nuevo canal a los laterales ha cambiado de ubicación y se hace en una zona en la cual en todos los medidores quedan inhabilitados por turbulencia, lo que denota una cobertura de medidores nula, tal como se muestra en la Tabla No. 3-8.

Esta situación, tal como se indicó, se dio a partir de la construcción del canal entubado Uchusuma Bajo, luego de lo cual se inhabilitaron todos los medidores Parshall y RBC que existían en todos los laterales de este bloque de riego.

En el Anexo No. 2, se muestra una propuesta de implementación de medidores en los laterales. Estos medidores recomendamos sean tipo Parshall, actualmente el ALA Tacna ha remitido documentación oficial al operador hidráulico es decir al Proyecto Especial Tacna a fin de que pueda elaborar el expediente técnico respectivo para la implementación de dichos medidores.
Tabla No. 3-8 Parámetro de Cobertura de Medidores Sistema Hidráulico Menor Bajo Uchusuma

<table>
<thead>
<tr>
<th>DESCRIPCION</th>
<th>AREA TOTAL (ha)</th>
<th>AREA BAJO RIEGO (ha)</th>
<th>Numero Medidores Operativos (Nmi)</th>
<th>Numero Medidores Red Hidrometrica (Nrh)</th>
<th>Cobertura Medidores (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LATERAL No. 1</td>
<td>197.16</td>
<td>115.94</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>LATERAL No. 2</td>
<td>29.43</td>
<td>18.50</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>LATERAL No. 3</td>
<td>6.67</td>
<td>4.76</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>LATERAL No. 4</td>
<td>24.49</td>
<td>14.20</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>LATERAL No. 5</td>
<td>41.66</td>
<td>33.62</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>LATERAL No. 5A</td>
<td>126.89</td>
<td>72.18</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>LATERAL No. 6</td>
<td>40.41</td>
<td>22.35</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>LATERAL No. 7</td>
<td>84.64</td>
<td>63.66</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>LATERAL No. 7A</td>
<td>7.87</td>
<td>5.50</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>LATERAL No. 8</td>
<td>67.70</td>
<td>53.45</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>LATERAL No. 9</td>
<td>40.06</td>
<td>21.43</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>LATERAL No. 10</td>
<td>92.64</td>
<td>72.12</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>LATERAL No. 11</td>
<td>40.98</td>
<td>27.09</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>LATERAL No. 12</td>
<td>58.49</td>
<td>28.65</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>LATERAL No. 13</td>
<td>8.26</td>
<td>2.95</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>LATERAL No. 14</td>
<td>19.19</td>
<td>11.89</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>LATERAL No. 15</td>
<td>29.62</td>
<td>16.50</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
4. CONCLUSIONES Y RECOMENDACIONES

4.1. Conclusiones

- Instar al operador hidráulico implemente la construcción de medidores y establezca un programa de mantenimiento y monitoreo de dichos medidores.
- Realizar el mejoramiento de la estructura de partición de agua en Piedras Blancas, la cual distribuye el agua tanto para uso poblacional como agrario. La operación de dicha estructura debe ser operada por el operador hidráulico (Proyecto Especial Tacna).
- Establecer un programa de monitoreo y control de captación en la quebrada Vilavilani a fin de reducir los caudales derivados y se establezca el cumplimiento de captaciones en función a permisos y licencias vigentes.
- Reconsiderar los valores de los límites permisibles para los parámetros de eficiencia tanto de captación de agua, distribución de agua, aprovechamiento de agua y cobertura de medidores, puesto que según los valores obtenidos en el presente trabajo muy difícilmente serán alcanzados.

4.2. Recomendaciones

- Capacitar al personal técnico y administrativo de las ALAs a nivel nacional a fin de que tomen conocimiento de la aplicación de estos parámetros de eficiencia como medidas de supervisión y control del trabajo de los operadores hidráulicos.
- Remitir los resultados de esta evaluación al operador hidráulico a fin de que tome en cuenta estos resultados y pueda implementar las medidas correctivas del caso.
TERCER PRODUCTO
“LÍNEA BASE DE LOS PARÁMETROS DE EFICIENCIA DE ACUERDO AL PROCEDIMIENTO PROPUESTO POR LA AUTORIDAD NACIONAL DEL AGUA, VALIDANDO SU APLICACIÓN EN LOS SECTORES HIDRÁULICOS MAYOR Y MENOR UCHUSUMA ÁMBITO DE LA AAA CAPLINA OCOÑA, ALA TACNA”
TABLA DE CONTENIDO

1. **INTRODUCCION** ... 5
 1.1. Antecedentes ... 5
 1.2. Justificación ... 6
 1.3. Objetivo ... 6
 1.4. Metas del Producto ... 6
 1.5. Base Legal .. 7
 1.6. Recopilación de información básica ... 8
 1.7. Ubicación de la zona de estudio ... 8

2. **PROTOCOLO PARA LA DETERMINACION DE LOS PARAMETROS DE EFICIENCIA PARA LOS OPERADORES DE INFRAESTRUCTURA HIDRÁULICA** ... 10
 2.1. Aspectos Normativos ... 10
 2.2. Parámetro de eficiencia de suministro de agua (PEs) .. 11
 2.3. Parámetro de eficiencia de operación (PEo) ... 12

3. **DETERMINACIÓN DE LOS PARÁMETROS DE EFICIENCIA PARA LOS USUARIOS DE AGUA** .. 15
 3.1. Usuarios de servicio ... 18
 3.1.1. Uso Agrario .. 18
 3.1.2. Uso Poblacional .. 25
 3.1.3. Otros Usos ... 26
 3.2. Usuarios de abastecimiento propio ... 26
 3.2.1. Uso Agrario .. 26
 3.2.2. Uso Poblacional .. 26
 3.2.3. Otros Usos ... 27

4. **VALIDACIÓN DEL PROCEDIMIENTO Y PLANTEAMIENTO DE PROPUESTAS** ... 28
4.1. Validación Eficiencia de Suministro ... 29
 4.1.1. Volumen de agua utilizado mensual (Vuu) .. 29
 4.1.2. Volumen de agua otorgado (Vo) ... 31
4.2. Validación eficiencia de operación ... 32
 4.2.1. Volumen de agua utilizado mensual (Vuu) .. 32
 4.2.2. Volumen de agua demandado (Vd) ... 32

5. CONCLUSIONES Y RECOMENDACIONES .. 33

 5.1. Conclusiones ... 33
 5.2. Recomendaciones .. 33
LISTA DE FIGURAS

Figura No. 1-1 Unidades Hidrográficas Región Tacna .. 9
Figura No. 3-1 Curva de probabilidad de ocurrencia de eventos para el Área Total y Área Bajo Riego ... 16
Figura No. 3-2 Variación mensual de PEs y PEo representativos de usuarios a nivel de lateral de riego .. 19
Figura No. 3-3 Variación mensual de PEs para cada lateral de riego 20
Figura No. 3-4 Variación mensual de PEo para cada lateral de riego 21
Figura No. 3-5 Variación de Pes y PEo en función del área bajo riego 22
Figura No. 3-6 Variación mensual de PEs y PEo representativos uso poblacional 26
Figura No. 3-7 Variación mensual de PEs y PEo representativos uso minero 28
Figura No. 4-1 Estación limnimétrica y limnigráfica Piedras Blancas 30
Figura No. 4-2 Panel de control de la estación automática 30
Figura No. 4-3 Curva de calibración estación limnimétrica Piedras Blancas 31

LISTA DE TABLAS

Tabla No. 3-1 Laterales del sector Uchusuma Bajo ... 15
Tabla No. 3-2 Características de las unidades agrícolas .. 16
Tabla No. 3-3 Características de los laterales de riego ... 17
Tabla No. 3-4 Valores de PEs y PEo representativos de usuarios a nivel de lateral de riego .. 18
Tabla No. 3-5 Valores mensuales de PEs para cada lateral de riego 20
Tabla No. 3-6 Valores mensuales de PEo para cada lateral de riego 21
Tabla No. 3-7 Valores mensuales de PEo para usuario UNJBG Facultad Ciencias Agrícolas .. 23
Tabla No. 3-8 Valores mensuales de PEo para usuario I.S.T. Fco. Gonzales de Paula Vigil .. 23
Tabla No. 3-9 Valores mensuales de PEo para usuario Flores Ayca, Esteban Marcos ... 24
Tabla No. 3-10 Valores mensuales de PEo para usuario Ayca Cutipa de Huacho, Lidia Concepción .. 24
Tabla No. 3-11 Valores de PEs y PEo representativos uso poblacional 25
Tabla No. 3-12 Valores de PEs y PEo representativos uso minero 27
1. INTRODUCCION

1.1. Antecedentes

La Autoridad Nacional del Agua fue creada al amparo de la primera Disposición Complementaria Final de la Ley de Organización y Funciones del Ministerio de Agricultura, aprobada mediante Decreto Legislativo N° 997, como Organismo Público adscrito al Ministerio de Agricultura responsable de dictar normas y establecer procedimientos para la gestión integrada y sostenible de los recursos hídricos. Tiene personería jurídica de derecho público interno y constituye un pliego presupuestal.

La Autoridad Nacional del Agua es el ente rector y la máxima autoridad técnico-normativa del Sistema Nacional de Gestión de los Recursos Hídricos. Es responsable del funcionamiento de dicho sistema en el marco de la Ley N° 29338 – Ley de Recursos Hídricos.

La indicada norma establece que la gestión integrada de los recursos hídricos se sustenta en su aprovechamiento eficiente y su conservación, incentivando el desarrollo de una cultura de uso eficiente entre los usuarios y operadores estableciendo que los titulares de derecho de uso tengan como una de sus obligaciones utilizar el agua con la mayor eficiencia técnica y económica.

De acuerdo al Reglamento de Organización y Funciones de la Autoridad Nacional del Agua corresponde a la Dirección de Administración de Recursos Hídricos, elaborar, proponer y supervisar la implementación de normas en materia de distribución multisectorial y establecimiento de parámetros de eficiencia.

La Dirección de Administración de Recursos Hídricos, ha elaborado una propuesta de norma “Lineamientos para la determinación y establecimiento de los parámetros de eficiencia”, en la que se establecen los procedimientos para determinar y establecer los parámetros de eficiencia para los operadores de infraestructura hidráulica y usuarios de agua.
1.2. Justificación

La Ley de Recursos Hídricos, establece el principio de eficiencia, el cual establece que la gestión integrada de los recursos hídricos se sustenta en el aprovechamiento eficiente y su conservación, incentivando el desarrollo de una cultura de uso eficiente entre los usuarios y operadores.

El Reglamento de la Ley de Recursos Hídricos, en el Capítulo IX, De los Parámetros de Eficiencia para el Aprovechamiento del Recurso Hídrico, establece que los Parámetros de Eficiencia para el Aprovechamiento de los Recursos Hídricos, son los valores necesarios que la Autoridad Nacional del Agua deberá establecer para determinar de forma objetiva, si los usuarios de agua y los operadores de infraestructura hidráulica, hacen uso eficiente del recurso hídrico. Los criterios a considerar para el establecimiento y evaluación de los Parámetros de Eficiencia son determinados por la Autoridad Nacional del Agua.

En base a la propuesta de norma elaborada “Lineamientos para la determinación y establecimiento de los parámetros de eficiencia”, es necesario validar su aplicabilidad, por lo que de acuerdo al procedimiento establecido debe determinarse la línea de base de los parámetros de eficiencia de distintos sectores hidráulicos en forma representativa en la zona sur, norte y centro del país.

1.3. Objetivo

Determinar la línea base de los parámetros de eficiencia de acuerdo al procedimiento propuesto por la Autoridad Nacional del Agua validando su aplicación en los sectores hidráulicos mayor y menor Uchusuma ámbito de la AAA Caplina Ocoña, ALA Tacna.

1.4. Metas del Producto

i) Determinación de los parámetros de eficiencia para usuarios de servicio que sea representativo del sector y subsectores hidráulicos;
mínimo (10) uso agrario, mínimo (05) uso poblacional, mínimo (02) otros usos.
Para el caso en estudio, incluimos 17 usuarios de servicio uso agrario (laterales de riego), además de 4 usuarios de servicio uso agrario individuales y 01 de uso poblacional (EPS Tacna). No se tienen usuarios de otros usos.

ii) Determinación de los parámetros de eficiencia para usuarios con abastecimiento propio que sea representativo del sector y subsectores hidráulicos: mínimo (05) uso agrario, mínimo (02) uso poblacional, mínimo (02) otros usos.
En este caso no se tiene de usuarios con abastecimiento propio de uso agrario, tampoco de uso poblacional y se cuenta con 01 usuario de abastecimiento propio de otros usos (Minera MINSUR S.A.).

iii) Validar el procedimiento de determinación de los parámetros y planteamiento de propuestas.

1.5. Base Legal

La base legal para la elaboración del presente trabajo se basa en:

- Resolución Jefatural N° 107-2016-ANA, 02 de mayo 2016. Dispone la pre-publicación del documento denominado “Lineamientos para Determinar y Establecer los Parámetros de Eficiencia para el Aprovechamiento de los Recursos Hídricos”.
Resolución Jefatural N° 250-2015-ANA, 02 de octubre 2015. Aprueba el reglamento de medición de agua en los sistemas hidráulicos comunes en el ámbito de las Administraciones Locales de Agua.

1.6. Recopilación de información básica

Para efectos de desarrollo del presente trabajo se tomó en cuenta las siguientes instituciones como fuentes de información:

- Autoridad Local de Agua Caplina Locumba
- Dirección Regional del Servicio Nacional de Meteorología e Hidrografía (SENAMHI).
- Dirección Regional de Agricultura Tacna.
- Gobierno Regional de Tacna. Proyecto Especial Afianzamiento y Ampliación de los Recursos Hídricos de Tacna.
- Junta de Usuarios Tacna.
- Empresa Prestadora de Servicios Tacna.

1.7. Ubicación de la zona de estudio

La zona de estudio se encuentra ubicada al sur del país, administrativamente pertenece a la AAA Caplina – Ocoña y ALA Tacna. En la Figura No. 1-1, se muestra la ubicación de la zona de estudio.
Figura No. 1-1 Unidades Hidrográficas Región Tacna
2. PROTOCOLO PARA LA DETERMINACIÓN DE LOS PARAMETROS DE EFICIENCIA PARA LOS OPERADORES DE INFRAESTRUCTURA HIDRÁULICA

2.1. Aspectos Normativos

La Resolución Jefatural No. 107-2016-ANA del 02 de mayo 2016, dispone la pre-publicación del documento denominado “Lineamientos para Determinar y Establecer los Parámetros de Eficiencia para el Aprovechamiento de los Recursos Hídricos”, en el portal web de la Autoridad Nacional del Agua: WWW.ANA.GOB.PE, para recepción de opiniones y sugerencias.

Dicha resolución jefatural incluye los citados lineamientos, los mismos que incluyen el Título I Generalidades, Título II Parámetros de eficiencia para el aprovechamiento del recurso hídrico, Título III Procedimiento para establecer los parámetros de eficiencia, Título IV Programa de uso eficiente, Anexo II Protocolo para la determinación de los parámetros de eficiencia para los operadores de infraestructura hidráulica, Anexo III Protocolo para la determinación de los parámetros de eficiencia para los usuarios de agua.

El protocolo incluido en el anexo de la Resolución Jefatural N° 107-2016-ANA, establece 4 parámetros de evaluación: de eficiencia de captación de agua, de eficiencia de distribución de agua, de eficiencia de aprovechamiento de agua y de cobertura de medidores.

Los parámetros de eficiencia para los usuarios de agua permiten valorar la optimización o ahorro del agua a través de la implementación de acciones o recursos, promoviendo el uso eficiente y la conservación de los recursos hídricos.

Los parámetros de eficiencia aplicables a los usuarios de agua son: Parámetro eficiencia de suministro (PEs) y Parámetro eficiencia de operación (PEo).
2.2. Parámetro de eficiencia de suministro de agua (PEs)

La eficiencia de suministro es la relación de la sumatoria de volúmenes de agua mensuales utilizados y el volumen de agua otorgado anual.

La eficiencia de suministro de agua permite medir los volúmenes de agua ahorrados en el interior de la unidad operativa o de producción. Los volúmenes de agua ahorrados forman parte de los recursos excedentes por el uso eficiente del recurso hídrico. Se evalúa con la siguiente expresión:

\[\text{PEs} = \frac{\sum \text{Vuu}}{\text{Vo}} \]

Donde:

- \(\text{Vuu} \): Volumen de agua utilizado mensual (m3)
- \(\text{Vo} \): Volumen de agua otorgado anual (m3)

Volumen de agua utilizado mensual (Vuu):

Corresponde a la suma de los volúmenes de agua utilizados en forma mensual para un periodo de un año.

Esta variable es medida en la cabecera de su unidad operativa (usuarios no agrarios) o unidad de producción (usuarios agrarios).

El instrumento de medición instalado por el usuario, debe ser validado por la Administración Local de Agua, debiendo cumplir con las características técnicas estándares aprobadas. Si se tratase de instrumentos acumuladores será suficiente la anotación mensual de los valores que se registran, caso contrario se registrarán las lecturas realizadas diarias anexada a la curva de calibración.

Volumen de agua otorgado (Vo):

El volumen otorgado corresponde al volumen anual máximo asignado al titular del derecho de uso de agua consignado en la licencia de uso de agua.
La eficiencia de suministro debe ser determinada anualmente, cuyo registro de resultados es conducido por el usuario bajo el seguimiento de la Administración Local de Agua y conocimiento de la Autoridad Administrativa del Agua.

La línea base de estos parámetros es definido con registros de un año de anterior, con la utilización de estructuras o instrumentos de medición validados por la Administración Local de Agua.

Los valores del parámetro de distribución pueden alcanzar valores: umbral y aceptable. Se considera que el indicador alcanza el valor del umbral cuando el volumen utilizado es igual al volumen otorgado, indicador que debe reflejar la optimización en el volumen del derecho otorgado y el volumen de agua utilizado. Un valor aceptable está representado por un 20% menor del valor máximo que representa la igualdad entre el volumen utilizado y el volumen otorgado; que exigiría una perdida máxima aceptable.

<table>
<thead>
<tr>
<th>Indicador</th>
<th>Umbral</th>
<th>Aceptable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eficiencia de suministro</td>
<td>1,0</td>
<td>0,90 – 1,0</td>
</tr>
</tbody>
</table>

2.3. Parámetro de eficiencia de operación (PEo)

La eficiencia de operación es la relación de la sumatoria de los volúmenes de agua mensuales utilizados en el año y el volumen demandado para la actividad productiva.

La eficiencia de operación permite medir las pérdidas de agua durante el proceso productivo de la actividad que se desarrolla. Para reducir las pérdidas por la utilización del agua el usuario deberá incorporar mejores prácticas de manejo o el mejoramiento de los recursos propios o la incorporación de tecnologías modernas.

Se calcula según la siguiente formulación:

\[PEo = \frac{\sum V_{uu}}{V_d} \]
Donde:

Vuu : Volumen agua utilizado por el usuario en el mes (m3)

Vd : Volumen de agua demandado (m3)

Volumen de agua utilizado mensual (Vuu):

Corresponde a la suma de los volúmenes de agua utilizados en forma mensual para un periodo de un año. Esta variable es medida en la cabecera de su unidad operativa (usuarios no agrarios) o unidad de producción (usuarios agrarios).

El instrumento de medición instalado por el usuario, debe ser validado por la Administración Local de Agua, debiendo cumplir con las características técnicas estándares aprobadas. Si se tratase de instrumentos acumuladores será suficiente la anotación mensual de los valores que se registran, caso contrario se registraran las lecturas realizadas diarias anexada a la curva de calibración.

Volumen de agua demandado (Vd):

Corresponde al volumen de agua demandado por el usuario para el periodo de un año. Esta variable es estimada tomando en cuenta las necesidades de agua para la actividad que realiza el usuario, el cual deberá ser justificado técnicamente y medido en la cabecera de la unidad operativa o unidad de producción. Su valor es semejante al presentado para la elaboración del Plan de Aprovechamiento de Disponibilidades Hídricas.

La eficiencia de operación debe ser determinada anualmente, cuyo registro de resultados es conducido el usuario bajo el seguimiento de la Administración Local de Agua y conocimiento de la Autoridad Administrativa del Agua.

Los valores del parámetro de distribución pueden alcanzar valores: umbral y aceptable. Se considera que el indicador alcanza el valor del umbral cuando el volumen utilizado es muy cercano al volumen demandado indicador que representa la optimización del uso de agua. Un valor aceptable es hasta un 25% menor del umbral que representa la igualdad entre el volumen utilizado y el volumen demandado.
<table>
<thead>
<tr>
<th>Indicador</th>
<th>Umbral</th>
<th>Aceptable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eficiencia de operación</td>
<td>1,0</td>
<td>0,75 – 1,0</td>
</tr>
</tbody>
</table>
3. DETERMINACIÓN DE LOS PARÁMETROS DE EFICIENCIA PARA LOS USUARIOS DE AGUA

Con esta determinación, se busca evaluar la eficiencia de los usuarios de agua utilizando dos parámetros, los mismos que se han indicado y descrito en el ítem anterior; parámetro de eficiencia de suministro de agua y eficiencia de operación.

Debemos tener presente que el caso del sector hidráulico Uchusuma, mayor y menor no se cuenta con subsectores.

La evaluación realizada al sector hidráulico menor Uchusuma o bajo Uchusuma se hace a un sistema de distribución de laterales de riego. En la Tabla No. 3-1, se muestra el listado de los laterales de riego del sector Uchusuma Bajo.

Tabla No. 3-1 Laterales del sector Uchusuma Bajo

<table>
<thead>
<tr>
<th>NOMBRE DEL LATERAL</th>
<th>UBICACIÓN</th>
<th>MARGEN</th>
<th>NUMERO DE USUARIOS</th>
<th>AREA SERVIDA</th>
<th>TIPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lateral 01</td>
<td>CD UCHUSUMA 16+570</td>
<td>M/D</td>
<td>44</td>
<td>125.06</td>
<td>L1</td>
</tr>
<tr>
<td>Lateral 02</td>
<td>CD UCHUSUMA 17+346</td>
<td>M/D</td>
<td>10</td>
<td>15.13</td>
<td>L1</td>
</tr>
<tr>
<td>Lateral 03</td>
<td>CD UCHUSUMA 17+916</td>
<td>M/D</td>
<td>2</td>
<td>4.75</td>
<td>L1</td>
</tr>
<tr>
<td>Lateral 04</td>
<td>CD UCHUSUMA 18+110</td>
<td>M/I</td>
<td>9</td>
<td>14.36</td>
<td>L1</td>
</tr>
<tr>
<td>Lateral 05 - A</td>
<td>CD UCHUSUMA 18+265</td>
<td>M/D</td>
<td>78</td>
<td>94.67</td>
<td>L1</td>
</tr>
<tr>
<td>Lateral 06</td>
<td>CD UCHUSUMA 19+107</td>
<td>M/I</td>
<td>6</td>
<td>21.1</td>
<td>L1</td>
</tr>
<tr>
<td>Lateral 07</td>
<td>CD UCHUSUMA 19+703</td>
<td>M/I</td>
<td>25</td>
<td>63.14</td>
<td>L1</td>
</tr>
<tr>
<td>Lateral 07 - A</td>
<td>CD UCHUSUMA 20+817</td>
<td>M/D</td>
<td>2</td>
<td>3.85</td>
<td>L1</td>
</tr>
<tr>
<td>Lateral 08</td>
<td>CD UCHUSUMA 21+228</td>
<td>M/I</td>
<td>19</td>
<td>48.98</td>
<td>L1</td>
</tr>
<tr>
<td>Lateral 09</td>
<td>CD UCHUSUMA 21+228</td>
<td>M/D</td>
<td>8</td>
<td>21.42</td>
<td>L1</td>
</tr>
<tr>
<td>Lateral 10</td>
<td>CD UCHUSUMA 22+410</td>
<td>M/D</td>
<td>31</td>
<td>42.55</td>
<td>L1</td>
</tr>
<tr>
<td>Lateral 11</td>
<td>CD UCHUSUMA 22+900</td>
<td>M/D</td>
<td>23</td>
<td>40.89</td>
<td>L1</td>
</tr>
<tr>
<td>Lateral 12</td>
<td>CD UCHUSUMA 23+685</td>
<td>M/I</td>
<td>12</td>
<td>26.45</td>
<td>L1</td>
</tr>
<tr>
<td>Lateral 13</td>
<td>CD UCHUSUMA 25+662</td>
<td>M/I</td>
<td>6</td>
<td>3.95</td>
<td>L1</td>
</tr>
<tr>
<td>Lateral 14</td>
<td>CD UCHUSUMA 26+170</td>
<td>M/I</td>
<td>8</td>
<td>12.52</td>
<td>L1</td>
</tr>
<tr>
<td>Lateral 15</td>
<td>CD UCHUSUMA 27+000</td>
<td>M/I</td>
<td>1</td>
<td>14</td>
<td>L1</td>
</tr>
</tbody>
</table>

Las superficies bajo riego en el área de estudio son muy pequeñas, por tanto es difícil hacer un análisis adecuado, en tal sentido proponemos que el cálculo de parámetros para uso agrícola sea a nivel de laterales de riego, por tanto proponemos el análisis para todos los laterales existentes. En la Tabla No. 3-2 se muestra un resumen de las características de las unidades agrícolas, se
puede apreciar un promedio bastante bajo de 2,71 ha por usuario como superficie total y de 1,73 ha por usuario como superficie bajo riego. Asimismo las superficies mínimas para el área total es de 0,04 ha por usuario y para el área bajo riego de 0,01 ha por usuario. Esto denota que existen parcelas muy pequeñas y se trata de la mayoría de ellas. Asimismo, de acuerdo a la Figura No.3-1, se puede observar probabilísticamente que un total inferior al 2% de las parcelas presentan valores de superficie superiores a las 5 ha, tanto para el área bajo riego como el área total de dichas parcelas.

Tabla No. 3-2 Características de las unidades agrícolas

<table>
<thead>
<tr>
<th>PARAMETROS ESTADISTICOS CALCULADOS</th>
<th>Número de Predios</th>
<th>Área Total (ha)</th>
<th>Área Bajo Riego (ha)</th>
<th>Recorrido (min.)</th>
<th>Escorrentía (mm.)</th>
<th>Riego Real (min.)</th>
<th>PROVISIONAL</th>
<th>Incremento JUVT</th>
<th>Tiempo de Rol (min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROMEDIO</td>
<td>362</td>
<td>2.71</td>
<td>1.73</td>
<td>1</td>
<td>31</td>
<td>4</td>
<td>4</td>
<td>31</td>
<td>6</td>
</tr>
<tr>
<td>MAXIMO</td>
<td></td>
<td>30.56</td>
<td>15.00</td>
<td>16</td>
<td>40</td>
<td>334</td>
<td>4</td>
<td>8</td>
<td>338</td>
</tr>
<tr>
<td>MINIMO</td>
<td></td>
<td>0.04</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>DESVEST</td>
<td></td>
<td>3.39</td>
<td>2.01</td>
<td>2</td>
<td>4</td>
<td>39</td>
<td>0</td>
<td>2</td>
<td>39</td>
</tr>
</tbody>
</table>

Figura No. 3-1 Curva de probabilidad de ocurrencia de eventos para el Área Total y Área Bajo Riego
Esta situación analizada y descrita hace que sea muy complicado calcular parámetros de eficiencia a nivel de usuarios individuales. Por tanto proponemos que esta determinación sea por laterales de riego. En la Tabla No. 3-3, se muestran el análisis de superficies y tiempos de riego de cada lateral. A nivel de lateral tenemos un promedio de área total de 53,89 ha y para área bajo riego de 34,40 ha, valor mínimo de 6,67 ha y máximo de 126,86 ha.

Tabla No. 3-3 Características de los laterales de riego

<table>
<thead>
<tr>
<th>Nº</th>
<th>Usuario</th>
<th>Número de Predios</th>
<th>Area Total (ha)</th>
<th>Area Bajo Riego (ha)</th>
<th>Recorrido (min.)</th>
<th>Escorrentía (min.)</th>
<th>Riego Real (min.)</th>
<th>PROVISIONAL</th>
<th>Incremento JUVT</th>
<th>Tiempo de Rol (min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LATERAL Nº 01</td>
<td>67</td>
<td>197.16</td>
<td>115.94</td>
<td>1.73</td>
<td>56</td>
<td>60</td>
<td>2057</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>LATERAL Nº 02</td>
<td>10</td>
<td>29.43</td>
<td>18.50</td>
<td>1.85</td>
<td>7</td>
<td>1</td>
<td>265</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>LATERAL Nº 03</td>
<td>2</td>
<td>6.67</td>
<td>4.76</td>
<td>2.38</td>
<td>4</td>
<td>1</td>
<td>110</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>LATERAL Nº 04</td>
<td>9</td>
<td>24.49</td>
<td>14.20</td>
<td>1.58</td>
<td>9</td>
<td>10</td>
<td>231</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>LATERAL Nº 05</td>
<td>16</td>
<td>41.66</td>
<td>33.62</td>
<td>2.10</td>
<td>19</td>
<td>14</td>
<td>745</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>LATERAL Nº 05A</td>
<td>67</td>
<td>126.89</td>
<td>72.18</td>
<td>1.08</td>
<td>76</td>
<td>65</td>
<td>1655</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>LATERAL Nº 06</td>
<td>6</td>
<td>40.41</td>
<td>22.35</td>
<td>3.73</td>
<td>12</td>
<td>7</td>
<td>390</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>LATERAL Nº 07</td>
<td>28</td>
<td>84.64</td>
<td>63.66</td>
<td>2.27</td>
<td>39</td>
<td>27</td>
<td>873</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>9</td>
<td>LATERAL Nº 07A</td>
<td>2</td>
<td>7.87</td>
<td>5.50</td>
<td>2.75</td>
<td>8</td>
<td>1</td>
<td>38</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>LATERAL Nº 08</td>
<td>28</td>
<td>67.70</td>
<td>53.45</td>
<td>1.91</td>
<td>41</td>
<td>31</td>
<td>811</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>LATERAL Nº 09</td>
<td>8</td>
<td>40.06</td>
<td>21.43</td>
<td>2.68</td>
<td>12</td>
<td>6</td>
<td>350</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>LATERAL Nº 10</td>
<td>65</td>
<td>92.64</td>
<td>72.12</td>
<td>1.11</td>
<td>24</td>
<td>23</td>
<td>1306</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>LATERAL Nº 11</td>
<td>24</td>
<td>40.98</td>
<td>27.09</td>
<td>1.13</td>
<td>15</td>
<td>8</td>
<td>493</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>LATERAL Nº 12</td>
<td>13</td>
<td>58.49</td>
<td>28.65</td>
<td>2.20</td>
<td>13</td>
<td>9</td>
<td>599</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>LATERAL Nº 13</td>
<td>6</td>
<td>8.26</td>
<td>2.95</td>
<td>0.49</td>
<td>16</td>
<td>5</td>
<td>134</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>LATERAL Nº 14</td>
<td>9</td>
<td>19.19</td>
<td>11.89</td>
<td>1.32</td>
<td>9</td>
<td>6</td>
<td>203</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>17</td>
<td>LATERAL Nº 15</td>
<td>2</td>
<td>29.62</td>
<td>16.50</td>
<td>8.25</td>
<td>5</td>
<td>40</td>
<td>309</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTALES</td>
<td></td>
<td>362</td>
<td>916.16</td>
<td>584.79</td>
<td>365</td>
<td>314</td>
<td>10569</td>
<td>55</td>
<td>139</td>
<td>10804</td>
</tr>
<tr>
<td>PROM. POR LATERAL</td>
<td></td>
<td>53.89</td>
<td>34.40</td>
<td>2.27</td>
<td>21</td>
<td>18</td>
<td>622</td>
<td>3</td>
<td>8</td>
<td>636</td>
</tr>
<tr>
<td>MÁXIMO</td>
<td></td>
<td>197.16</td>
<td>115.94</td>
<td>8.25</td>
<td>76</td>
<td>65</td>
<td>2057</td>
<td>8</td>
<td>30</td>
<td>2083</td>
</tr>
<tr>
<td>MÍNIMO</td>
<td></td>
<td>6.67</td>
<td>2.95</td>
<td>0.49</td>
<td>4</td>
<td>1</td>
<td>38</td>
<td>0</td>
<td>0</td>
<td>55</td>
</tr>
<tr>
<td>DESV EST</td>
<td></td>
<td>49.30</td>
<td>30.93</td>
<td>1.72</td>
<td>20</td>
<td>20</td>
<td>573</td>
<td>3</td>
<td>8</td>
<td>580</td>
</tr>
</tbody>
</table>
3.1. Usuarios de servicio

De acuerdo al protocolo establecido por la ANA, para la determinación de los parámetros de suministro de agua (PEs), y eficiencia de operación (PEo), se requiere información de volúmenes de agua utilizados y volumen de agua otorgado según licencias a nivel mensual.

3.1.1. Uso Agrario

Para el uso agrario, como señalamos en el ítem anterior proponemos trabajar a nivel de laterales de riego. En la Tabla No. 3-4 podemos observar los valores representativos obtenidos para los parámetros de eficiencia de suministro y eficiencia de operación. Asimismo en la Figura No. 3-2 se aprecia la variación mensual de dichos parámetros.

Tabla No. 3-4 Valores de PEs y PEo representativos de usuarios a nivel de lateral de riego

<table>
<thead>
<tr>
<th>MES</th>
<th>Vu (m³)</th>
<th>Vo (m³)</th>
<th>Vd (m³)</th>
<th>PEs</th>
<th>PEo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENE</td>
<td>429312.78</td>
<td>432000.00</td>
<td>503569.17</td>
<td>0.99</td>
<td>0.85</td>
</tr>
<tr>
<td>FEB</td>
<td>354484.26</td>
<td>417000.00</td>
<td>454836.67</td>
<td>0.85</td>
<td>0.78</td>
</tr>
<tr>
<td>MAR</td>
<td>323341.39</td>
<td>422000.00</td>
<td>503569.17</td>
<td>0.77</td>
<td>0.64</td>
</tr>
<tr>
<td>ABR</td>
<td>213705.18</td>
<td>321000.00</td>
<td>487325.00</td>
<td>0.67</td>
<td>0.44</td>
</tr>
<tr>
<td>MAY</td>
<td>235265.94</td>
<td>452000.00</td>
<td>503569.17</td>
<td>0.52</td>
<td>0.47</td>
</tr>
<tr>
<td>JUN</td>
<td>287899.56</td>
<td>450000.00</td>
<td>487325.00</td>
<td>0.64</td>
<td>0.59</td>
</tr>
<tr>
<td>JUL</td>
<td>205461.36</td>
<td>452000.00</td>
<td>503569.17</td>
<td>0.45</td>
<td>0.41</td>
</tr>
<tr>
<td>AGO</td>
<td>221377.77</td>
<td>422000.00</td>
<td>503569.17</td>
<td>0.52</td>
<td>0.44</td>
</tr>
<tr>
<td>SEP</td>
<td>246553.63</td>
<td>376000.00</td>
<td>487325.00</td>
<td>0.66</td>
<td>0.51</td>
</tr>
<tr>
<td>OCT</td>
<td>258360.81</td>
<td>392000.00</td>
<td>503569.17</td>
<td>0.66</td>
<td>0.51</td>
</tr>
<tr>
<td>NOV</td>
<td>287645.90</td>
<td>389000.00</td>
<td>487325.00</td>
<td>0.74</td>
<td>0.59</td>
</tr>
<tr>
<td>DIC</td>
<td>284440.71</td>
<td>422000.00</td>
<td>503569.17</td>
<td>0.67</td>
<td>0.56</td>
</tr>
<tr>
<td>PROMEDIO</td>
<td>278987.44</td>
<td>412250.00</td>
<td>494093.40</td>
<td>0.68</td>
<td>0.57</td>
</tr>
<tr>
<td>MAX</td>
<td>429312.78</td>
<td>452000.00</td>
<td>503569.17</td>
<td>0.99</td>
<td>0.85</td>
</tr>
<tr>
<td>MIN</td>
<td>205461.36</td>
<td>321000.00</td>
<td>454836.67</td>
<td>0.45</td>
<td>0.41</td>
</tr>
<tr>
<td>DESVET</td>
<td>65244.01</td>
<td>37988.34</td>
<td>14625.22</td>
<td>0.15</td>
<td>0.14</td>
</tr>
</tbody>
</table>
En el Anexo No. 3, se muestra el cálculo de los parámetros de eficiencia de suministro (PEs) y eficiencia de operación (PEo), para usuarios de servicio, para todos los laterales de riego, 17 en total y para los doce meses del año 2015.

En la Tabla No. 3-5, se muestra los valores mensuales calculados del Parámetro de Eficiencia de Suministro (PEs) para cada lateral de riego y en la Figura No. 3-3, apreciamos la variación mensual de PEs para cada lateral de riego.
Tabla No. 3-5 Valores mensuales de PEs para cada lateral de riego

<table>
<thead>
<tr>
<th>MES</th>
<th>LATERAL 1</th>
<th>LATERAL 2</th>
<th>LATERAL 3</th>
<th>LATERAL 4</th>
<th>LATERAL 5</th>
<th>LATERAL 5A</th>
<th>LATERAL 6</th>
<th>LATERAL 7</th>
<th>LATERAL 7A</th>
<th>LATERAL 8</th>
<th>LATERAL 9</th>
<th>LATERAL 10</th>
<th>LATERAL 11</th>
<th>LATERAL 12</th>
<th>LATERAL 13</th>
<th>LATERAL 14</th>
<th>LATERAL 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENE</td>
<td>0.92</td>
<td>0.74</td>
<td>1.20</td>
<td>0.84</td>
<td>2.72</td>
<td>1.19</td>
<td>0.90</td>
<td>0.71</td>
<td>0.36</td>
<td>0.79</td>
<td>0.85</td>
<td>0.94</td>
<td>1.08</td>
<td>2.35</td>
<td>0.88</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>FEB</td>
<td>0.79</td>
<td>0.64</td>
<td>1.02</td>
<td>0.72</td>
<td>2.33</td>
<td>1.02</td>
<td>0.77</td>
<td>0.61</td>
<td>0.31</td>
<td>0.67</td>
<td>0.72</td>
<td>0.80</td>
<td>0.81</td>
<td>2.01</td>
<td>0.76</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>MAR</td>
<td>0.71</td>
<td>0.57</td>
<td>0.92</td>
<td>0.65</td>
<td>2.10</td>
<td>0.92</td>
<td>0.70</td>
<td>0.55</td>
<td>0.28</td>
<td>0.61</td>
<td>0.65</td>
<td>0.72</td>
<td>0.73</td>
<td>0.84</td>
<td>1.82</td>
<td>0.68</td>
<td>0.65</td>
</tr>
<tr>
<td>ABR</td>
<td>0.62</td>
<td>0.50</td>
<td>0.80</td>
<td>0.56</td>
<td>1.82</td>
<td>0.80</td>
<td>0.61</td>
<td>0.48</td>
<td>0.24</td>
<td>0.53</td>
<td>0.57</td>
<td>0.63</td>
<td>0.63</td>
<td>0.73</td>
<td>1.58</td>
<td>0.59</td>
<td>0.57</td>
</tr>
<tr>
<td>MAY</td>
<td>0.48</td>
<td>0.39</td>
<td>0.63</td>
<td>0.44</td>
<td>1.42</td>
<td>0.62</td>
<td>0.47</td>
<td>0.37</td>
<td>0.19</td>
<td>0.41</td>
<td>0.44</td>
<td>0.49</td>
<td>0.49</td>
<td>0.57</td>
<td>1.23</td>
<td>0.46</td>
<td>0.44</td>
</tr>
<tr>
<td>JUN</td>
<td>0.59</td>
<td>0.48</td>
<td>0.77</td>
<td>0.54</td>
<td>1.75</td>
<td>0.76</td>
<td>0.58</td>
<td>0.46</td>
<td>0.23</td>
<td>0.51</td>
<td>0.54</td>
<td>0.60</td>
<td>0.61</td>
<td>0.70</td>
<td>1.52</td>
<td>0.57</td>
<td>0.54</td>
</tr>
<tr>
<td>JUL</td>
<td>0.42</td>
<td>0.34</td>
<td>0.55</td>
<td>0.39</td>
<td>1.24</td>
<td>0.54</td>
<td>0.41</td>
<td>0.33</td>
<td>0.16</td>
<td>0.36</td>
<td>0.39</td>
<td>0.43</td>
<td>0.43</td>
<td>0.50</td>
<td>1.08</td>
<td>0.40</td>
<td>0.39</td>
</tr>
<tr>
<td>AGO</td>
<td>0.49</td>
<td>0.39</td>
<td>0.63</td>
<td>0.45</td>
<td>1.44</td>
<td>0.63</td>
<td>0.48</td>
<td>0.38</td>
<td>0.19</td>
<td>0.42</td>
<td>0.45</td>
<td>0.50</td>
<td>0.50</td>
<td>0.57</td>
<td>1.24</td>
<td>0.47</td>
<td>0.45</td>
</tr>
<tr>
<td>SEP</td>
<td>0.61</td>
<td>0.49</td>
<td>0.79</td>
<td>0.56</td>
<td>1.79</td>
<td>0.78</td>
<td>0.60</td>
<td>0.47</td>
<td>0.24</td>
<td>0.52</td>
<td>0.56</td>
<td>0.62</td>
<td>0.62</td>
<td>0.71</td>
<td>1.55</td>
<td>0.58</td>
<td>0.56</td>
</tr>
<tr>
<td>OCT</td>
<td>0.61</td>
<td>0.49</td>
<td>0.79</td>
<td>0.56</td>
<td>1.80</td>
<td>0.79</td>
<td>0.60</td>
<td>0.47</td>
<td>0.24</td>
<td>0.52</td>
<td>0.56</td>
<td>0.62</td>
<td>0.62</td>
<td>0.72</td>
<td>1.56</td>
<td>0.59</td>
<td>0.56</td>
</tr>
<tr>
<td>NOV</td>
<td>0.68</td>
<td>0.55</td>
<td>0.89</td>
<td>0.63</td>
<td>2.02</td>
<td>0.88</td>
<td>0.67</td>
<td>0.53</td>
<td>0.27</td>
<td>0.59</td>
<td>0.63</td>
<td>0.70</td>
<td>0.70</td>
<td>0.81</td>
<td>1.75</td>
<td>0.66</td>
<td>0.63</td>
</tr>
<tr>
<td>DIC</td>
<td>0.62</td>
<td>0.50</td>
<td>0.81</td>
<td>0.57</td>
<td>1.84</td>
<td>0.81</td>
<td>0.61</td>
<td>0.48</td>
<td>0.24</td>
<td>0.53</td>
<td>0.57</td>
<td>0.64</td>
<td>0.64</td>
<td>0.73</td>
<td>1.60</td>
<td>0.60</td>
<td>0.57</td>
</tr>
<tr>
<td>PROMEDIO</td>
<td>0.63</td>
<td>0.51</td>
<td>0.82</td>
<td>0.58</td>
<td>1.86</td>
<td>0.81</td>
<td>0.62</td>
<td>0.49</td>
<td>0.24</td>
<td>0.54</td>
<td>0.58</td>
<td>0.64</td>
<td>0.64</td>
<td>0.74</td>
<td>1.61</td>
<td>0.60</td>
<td>0.58</td>
</tr>
<tr>
<td>MAX</td>
<td>0.92</td>
<td>0.74</td>
<td>1.20</td>
<td>0.84</td>
<td>2.72</td>
<td>1.19</td>
<td>0.90</td>
<td>0.71</td>
<td>0.36</td>
<td>0.79</td>
<td>0.85</td>
<td>0.94</td>
<td>0.94</td>
<td>1.08</td>
<td>2.35</td>
<td>0.88</td>
<td>0.84</td>
</tr>
<tr>
<td>MIN</td>
<td>0.42</td>
<td>0.34</td>
<td>0.55</td>
<td>0.39</td>
<td>1.24</td>
<td>0.54</td>
<td>0.41</td>
<td>0.33</td>
<td>0.16</td>
<td>0.36</td>
<td>0.39</td>
<td>0.43</td>
<td>0.43</td>
<td>0.50</td>
<td>1.08</td>
<td>0.40</td>
<td>0.39</td>
</tr>
<tr>
<td>DESVET</td>
<td>0.14</td>
<td>0.11</td>
<td>0.18</td>
<td>0.13</td>
<td>0.41</td>
<td>0.18</td>
<td>0.13</td>
<td>0.11</td>
<td>0.05</td>
<td>0.12</td>
<td>0.13</td>
<td>0.14</td>
<td>0.14</td>
<td>0.16</td>
<td>0.35</td>
<td>0.13</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Figura No. 3-3 Variación mensual de PEs para cada lateral de riego

De la misma manera en la Tabla No. 3-6, se muestra los valores mensuales calculados del Parámetro de Eficiencia de Operación (PEo) para cada lateral de riego.

En la Figura No. 3-4, apreciamos la variación mensual de PEo para cada lateral de riego.
Se ha efectuado un análisis del comportamiento de los parámetros de eficiencia Pes y PEo para el mes de enero en función al área bajo riego de los usuarios y se obtiene una tendencia a que estos aumentan significativamente cuando las superficies disminuyen y se mantienen constantes cuando estas aumentan, esta situación se repite todos los meses del año. En la Figura No. 3-5, se puede observar dicho efecto.
Adicionalmente a la determinación de parámetros tomando como unidad de cálculo los laterales de riego, se plantea la determinación de parámetros de eficiencia para parcelas de usuarios agricultores individuales representativos en el bloque de riego.

En la Tabla No. 3-7, se muestra los resultados de los parámetros de eficiencia PEs y PEo para el usuario UNJBG Facultad Ciencias Agrícolas. En este caso tenemos valores para PEs y PEo máximos de 1,26 y 0,87 respectivamente, mínimos de 0,60 y 0,42. Se puede observar que los mayores valores se dan en los períodos de avenidas y los valores mínimos en el periodo de estiaje.

En la Tabla No. 3-8, se muestra los resultados de los parámetros de eficiencia PEs y PEo para el usuario I.S.T. Fco. Gonzales de Paula Vigil.

Los valores para PEs y PEo máximos de 1,27 y 0,88 respectivamente, mínimos de 0,61 y 0,42. Se puede observar la misma tendencia que los mayores valores se dan en los periodos de avenidas y los valores mínimos en el periodo de estiaje.
Tabla No. 3-7 Valores mensuales de PEo para usuario UNJBG Facultad Ciencias Agrícolas

<table>
<thead>
<tr>
<th>MES</th>
<th>Vuu (m(^3))</th>
<th>Vo (m(^3))</th>
<th>Vd (m(^3))</th>
<th>PEs</th>
<th>PEo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENE</td>
<td>12551.58</td>
<td>9957.37</td>
<td>14466.67</td>
<td>1.26</td>
<td>0.87</td>
</tr>
<tr>
<td>FEB</td>
<td>10363.86</td>
<td>8993.75</td>
<td>13066.67</td>
<td>1.15</td>
<td>0.79</td>
</tr>
<tr>
<td>MAR</td>
<td>9453.35</td>
<td>9957.37</td>
<td>14466.67</td>
<td>0.95</td>
<td>0.65</td>
</tr>
<tr>
<td>ABR</td>
<td>6247.98</td>
<td>9636.16</td>
<td>14000.00</td>
<td>0.65</td>
<td>0.45</td>
</tr>
<tr>
<td>MAY</td>
<td>6878.34</td>
<td>9957.37</td>
<td>14466.67</td>
<td>0.69</td>
<td>0.48</td>
</tr>
<tr>
<td>JUN</td>
<td>8417.16</td>
<td>9636.16</td>
<td>14000.00</td>
<td>0.87</td>
<td>0.60</td>
</tr>
<tr>
<td>JUL</td>
<td>6006.96</td>
<td>9957.37</td>
<td>14466.67</td>
<td>0.60</td>
<td>0.42</td>
</tr>
<tr>
<td>AGO</td>
<td>6472.30</td>
<td>9957.37</td>
<td>14466.67</td>
<td>0.65</td>
<td>0.45</td>
</tr>
<tr>
<td>SEP</td>
<td>7208.35</td>
<td>9636.16</td>
<td>14000.00</td>
<td>0.75</td>
<td>0.51</td>
</tr>
<tr>
<td>OCT</td>
<td>7553.55</td>
<td>9957.37</td>
<td>14466.67</td>
<td>0.76</td>
<td>0.52</td>
</tr>
<tr>
<td>NOV</td>
<td>8409.74</td>
<td>9636.16</td>
<td>14000.00</td>
<td>0.87</td>
<td>0.60</td>
</tr>
<tr>
<td>DIC</td>
<td>8316.04</td>
<td>9957.37</td>
<td>14466.67</td>
<td>0.84</td>
<td>0.57</td>
</tr>
<tr>
<td>PROMEDIO</td>
<td>8156.60</td>
<td>9770.00</td>
<td>14194.44</td>
<td>0.84</td>
<td>0.58</td>
</tr>
<tr>
<td>MAX</td>
<td>12551.58</td>
<td>9957.37</td>
<td>14466.67</td>
<td>1.26</td>
<td>0.87</td>
</tr>
<tr>
<td>MIN</td>
<td>6006.96</td>
<td>9933.75</td>
<td>13066.67</td>
<td>0.60</td>
<td>0.42</td>
</tr>
<tr>
<td>DESVET</td>
<td>1907.50</td>
<td>289.19</td>
<td>420.16</td>
<td>0.20</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Tabla No. 3-8 Valores mensuales de PEo para usuario I.S.T. Fco. Gonzales de Paula Vigil.

<table>
<thead>
<tr>
<th>MES</th>
<th>Vuu (m(^3))</th>
<th>Vo (m(^3))</th>
<th>Vd (m(^3))</th>
<th>PEs</th>
<th>PEo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENE</td>
<td>13567.08</td>
<td>10668.59</td>
<td>15500.00</td>
<td>1.27</td>
<td>0.88</td>
</tr>
<tr>
<td>FEB</td>
<td>11202.36</td>
<td>9636.14</td>
<td>14000.00</td>
<td>1.16</td>
<td>0.80</td>
</tr>
<tr>
<td>MAR</td>
<td>10218.19</td>
<td>10668.59</td>
<td>15500.00</td>
<td>0.96</td>
<td>0.66</td>
</tr>
<tr>
<td>ABR</td>
<td>6753.48</td>
<td>10324.44</td>
<td>15000.00</td>
<td>0.65</td>
<td>0.45</td>
</tr>
<tr>
<td>MAY</td>
<td>7434.84</td>
<td>10668.59</td>
<td>15500.00</td>
<td>0.70</td>
<td>0.48</td>
</tr>
<tr>
<td>JUN</td>
<td>9098.16</td>
<td>10324.44</td>
<td>15000.00</td>
<td>0.88</td>
<td>0.61</td>
</tr>
<tr>
<td>JUL</td>
<td>6492.96</td>
<td>10668.59</td>
<td>15500.00</td>
<td>0.61</td>
<td>0.42</td>
</tr>
<tr>
<td>AGO</td>
<td>6995.95</td>
<td>10668.59</td>
<td>15500.00</td>
<td>0.66</td>
<td>0.45</td>
</tr>
<tr>
<td>SEP</td>
<td>7791.55</td>
<td>10324.44</td>
<td>15000.00</td>
<td>0.75</td>
<td>0.52</td>
</tr>
<tr>
<td>OCT</td>
<td>8164.68</td>
<td>10668.59</td>
<td>15500.00</td>
<td>0.77</td>
<td>0.53</td>
</tr>
<tr>
<td>NOV</td>
<td>9090.14</td>
<td>10324.44</td>
<td>15000.00</td>
<td>0.88</td>
<td>0.61</td>
</tr>
<tr>
<td>DIC</td>
<td>8988.85</td>
<td>10668.59</td>
<td>15500.00</td>
<td>0.84</td>
<td>0.58</td>
</tr>
<tr>
<td>PROMEDIO</td>
<td>8816.52</td>
<td>10467.83</td>
<td>15208.33</td>
<td>0.84</td>
<td>0.58</td>
</tr>
<tr>
<td>MAX</td>
<td>13567.08</td>
<td>10668.59</td>
<td>15500.00</td>
<td>1.27</td>
<td>0.88</td>
</tr>
<tr>
<td>MIN</td>
<td>6492.96</td>
<td>9636.14</td>
<td>14000.00</td>
<td>0.61</td>
<td>0.42</td>
</tr>
<tr>
<td>DESVET</td>
<td>2061.83</td>
<td>309.85</td>
<td>450.17</td>
<td>0.21</td>
<td>0.14</td>
</tr>
</tbody>
</table>
Tabla No. 3-9 Valores mensuales de PEo para usuario Flores Ayca, Esteban Marcos

<table>
<thead>
<tr>
<th>MES</th>
<th>Vuu (m3)</th>
<th>Vo (m3)</th>
<th>Vd (m3)</th>
<th>PE$\bar{\Sigma}$</th>
<th>PEo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENE</td>
<td>1421.70</td>
<td>1920.30</td>
<td>2790.00</td>
<td>0.74</td>
<td>0.51</td>
</tr>
<tr>
<td>FEB</td>
<td>1173.90</td>
<td>1734.47</td>
<td>2520.00</td>
<td>0.68</td>
<td>0.47</td>
</tr>
<tr>
<td>MAR</td>
<td>1070.77</td>
<td>1920.30</td>
<td>2790.00</td>
<td>0.56</td>
<td>0.38</td>
</tr>
<tr>
<td>ABR</td>
<td>707.70</td>
<td>1858.36</td>
<td>2700.00</td>
<td>0.38</td>
<td>0.26</td>
</tr>
<tr>
<td>MAY</td>
<td>779.10</td>
<td>1920.30</td>
<td>2790.00</td>
<td>0.41</td>
<td>0.28</td>
</tr>
<tr>
<td>JUN</td>
<td>953.40</td>
<td>1858.36</td>
<td>2700.00</td>
<td>0.51</td>
<td>0.35</td>
</tr>
<tr>
<td>JUL</td>
<td>680.40</td>
<td>1920.30</td>
<td>2790.00</td>
<td>0.35</td>
<td>0.24</td>
</tr>
<tr>
<td>AGO</td>
<td>733.11</td>
<td>1920.30</td>
<td>2790.00</td>
<td>0.38</td>
<td>0.26</td>
</tr>
<tr>
<td>SEP</td>
<td>816.48</td>
<td>1858.36</td>
<td>2700.00</td>
<td>0.44</td>
<td>0.30</td>
</tr>
<tr>
<td>OCT</td>
<td>855.58</td>
<td>1920.30</td>
<td>2790.00</td>
<td>0.45</td>
<td>0.31</td>
</tr>
<tr>
<td>NOV</td>
<td>952.56</td>
<td>1858.36</td>
<td>2700.00</td>
<td>0.51</td>
<td>0.35</td>
</tr>
<tr>
<td>DIC</td>
<td>941.95</td>
<td>1920.30</td>
<td>2790.00</td>
<td>0.49</td>
<td>0.34</td>
</tr>
<tr>
<td>PROMEDIO</td>
<td>923.89</td>
<td>1884.17</td>
<td>2737.50</td>
<td>0.49</td>
<td>0.34</td>
</tr>
<tr>
<td>MAX</td>
<td>1421.70</td>
<td>1920.30</td>
<td>2790.00</td>
<td>0.74</td>
<td>0.51</td>
</tr>
<tr>
<td>MIN</td>
<td>680.40</td>
<td>1734.47</td>
<td>2520.00</td>
<td>0.35</td>
<td>0.24</td>
</tr>
<tr>
<td>DESVET</td>
<td>216.06</td>
<td>55.77</td>
<td>81.03</td>
<td>0.12</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Tabla No. 3-10 Valores mensuales de PEo para usuario Ayca Cutipa de Huacho, Lidia Concepción

<table>
<thead>
<tr>
<th>MES</th>
<th>Vuu (m3)</th>
<th>Vo (m3)</th>
<th>Vd (m3)</th>
<th>PE$\bar{\Sigma}$</th>
<th>PEo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENE</td>
<td>2112.24</td>
<td>2133.65</td>
<td>3100.00</td>
<td>0.99</td>
<td>0.68</td>
</tr>
<tr>
<td>FEB</td>
<td>1744.08</td>
<td>1927.17</td>
<td>2800.00</td>
<td>0.90</td>
<td>0.62</td>
</tr>
<tr>
<td>MAR</td>
<td>1590.86</td>
<td>2133.65</td>
<td>3100.00</td>
<td>0.75</td>
<td>0.51</td>
</tr>
<tr>
<td>ABR</td>
<td>1051.44</td>
<td>2064.82</td>
<td>3000.00</td>
<td>0.51</td>
<td>0.35</td>
</tr>
<tr>
<td>MAY</td>
<td>1157.52</td>
<td>2133.65</td>
<td>3100.00</td>
<td>0.54</td>
<td>0.37</td>
</tr>
<tr>
<td>JUN</td>
<td>1416.48</td>
<td>2064.82</td>
<td>3000.00</td>
<td>0.69</td>
<td>0.47</td>
</tr>
<tr>
<td>JUL</td>
<td>1010.88</td>
<td>2133.65</td>
<td>3100.00</td>
<td>0.47</td>
<td>0.33</td>
</tr>
<tr>
<td>AGO</td>
<td>1089.19</td>
<td>2133.65</td>
<td>3100.00</td>
<td>0.51</td>
<td>0.35</td>
</tr>
<tr>
<td>SEP</td>
<td>1213.06</td>
<td>2064.82</td>
<td>3000.00</td>
<td>0.59</td>
<td>0.40</td>
</tr>
<tr>
<td>OCT</td>
<td>1271.15</td>
<td>2133.65</td>
<td>3100.00</td>
<td>0.60</td>
<td>0.41</td>
</tr>
<tr>
<td>NOV</td>
<td>1415.23</td>
<td>2064.82</td>
<td>3000.00</td>
<td>0.69</td>
<td>0.47</td>
</tr>
<tr>
<td>DIC</td>
<td>1399.46</td>
<td>2133.65</td>
<td>3100.00</td>
<td>0.66</td>
<td>0.45</td>
</tr>
<tr>
<td>PROMEDIO</td>
<td>1372.63</td>
<td>2093.50</td>
<td>3041.67</td>
<td>0.66</td>
<td>0.45</td>
</tr>
<tr>
<td>MAX</td>
<td>2112.24</td>
<td>2133.65</td>
<td>3100.00</td>
<td>0.99</td>
<td>0.68</td>
</tr>
<tr>
<td>MIN</td>
<td>1010.88</td>
<td>1927.17</td>
<td>2800.00</td>
<td>0.47</td>
<td>0.33</td>
</tr>
<tr>
<td>DESVET</td>
<td>321.00</td>
<td>61.97</td>
<td>90.03</td>
<td>0.16</td>
<td>0.11</td>
</tr>
</tbody>
</table>
3.1.2. **Uso Poblacional**

En el sistema en cuestión, para usuarios de uso poblacional tenemos la Empresa Prestadora de Servicios Tacna (EPS Tacna), la cual es la encargada de abastecer de agua a la población de Tacna. Emplea agua de dos fuentes; Caplina y Uchusuma, por tanto en este caso se ha tomado en cuenta sólo lo correspondiente a lo abastecido, otorgado y demandado respecto al agua utilizada del sistema Uchusuma. En la Tabla No. 3-11 se muestra los valores calculados del parámetro de suministro de agua y el indicador de eficiencia de operación a nivel mensual. Asimismo en la Figura No. 3-6 se muestra la variación mensual de dichos parámetros.

Tabla No. 3-11 Valores de PEs y PEo representativos uso poblacional

<table>
<thead>
<tr>
<th>MES</th>
<th>Vuu (m³)</th>
<th>Vo (m³)</th>
<th>Vd (m³)</th>
<th>PEs</th>
<th>PEo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENE</td>
<td>1060765.00</td>
<td>1607040.00</td>
<td>2656972.80</td>
<td>0.66</td>
<td>0.40</td>
</tr>
<tr>
<td>FEB</td>
<td>967680.00</td>
<td>1451520.00</td>
<td>2501452.80</td>
<td>0.67</td>
<td>0.39</td>
</tr>
<tr>
<td>MAR</td>
<td>1090260.00</td>
<td>1607040.00</td>
<td>2437344.00</td>
<td>0.68</td>
<td>0.45</td>
</tr>
<tr>
<td>ABR</td>
<td>1111449.60</td>
<td>1555200.00</td>
<td>2571264.00</td>
<td>0.71</td>
<td>0.43</td>
</tr>
<tr>
<td>MAY</td>
<td>1111449.60</td>
<td>1607040.00</td>
<td>2105222.40</td>
<td>0.69</td>
<td>0.53</td>
</tr>
<tr>
<td>JUN</td>
<td>979282.80</td>
<td>1555200.00</td>
<td>1928448.00</td>
<td>0.63</td>
<td>0.51</td>
</tr>
<tr>
<td>JUL</td>
<td>1071360.00</td>
<td>1607040.00</td>
<td>1925769.60</td>
<td>0.67</td>
<td>0.56</td>
</tr>
<tr>
<td>AGO</td>
<td>1071360.00</td>
<td>1607040.00</td>
<td>1882915.20</td>
<td>0.67</td>
<td>0.57</td>
</tr>
<tr>
<td>SEP</td>
<td>1026250.00</td>
<td>1555200.00</td>
<td>1886976.00</td>
<td>0.66</td>
<td>0.54</td>
</tr>
<tr>
<td>OCT</td>
<td>1071360.00</td>
<td>1607040.00</td>
<td>1992729.60</td>
<td>0.67</td>
<td>0.54</td>
</tr>
<tr>
<td>NOV</td>
<td>1036800.00</td>
<td>1555200.00</td>
<td>2037312.00</td>
<td>0.67</td>
<td>0.51</td>
</tr>
<tr>
<td>DIC</td>
<td>1113660.00</td>
<td>1607040.00</td>
<td>2105222.40</td>
<td>0.69</td>
<td>0.53</td>
</tr>
<tr>
<td>PROMEDIO</td>
<td>1059306.42</td>
<td>1576800.00</td>
<td>2169302.40</td>
<td>0.67</td>
<td>0.50</td>
</tr>
<tr>
<td>MAX</td>
<td>1113660.00</td>
<td>1607040.00</td>
<td>2656972.80</td>
<td>0.71</td>
<td>0.57</td>
</tr>
<tr>
<td>MIN</td>
<td>967680.00</td>
<td>1451520.00</td>
<td>1882915.20</td>
<td>0.63</td>
<td>0.39</td>
</tr>
<tr>
<td>DESVET</td>
<td>48791.48</td>
<td>46673.45</td>
<td>288794.13</td>
<td>0.02</td>
<td>0.06</td>
</tr>
</tbody>
</table>
3.1.3. Otros Usos

En este caso no se reporta ningún otro uso de servicio en el sistema estudiado.

3.2. Usuarios de abastecimiento propio

De acuerdo al protocolo establecido por la ANA, para la determinación del parámetro de suministro de agua (PEs), y eficiencia de operación (PEo), se requiere información de volúmenes de agua utilizados a nivel mensual y volumen de agua otorgado según licencias para cada tipo de usuario.

3.2.1. Uso Agrario

En este caso no se reporta ningún otro uso de servicio bajo la modalidad de abastecimiento propio.

3.2.2. Uso Poblacional

En este caso tampoco se reporta ningún otro uso de servicio.
3.2.3. Otros Usos

La información requerida para el cálculo de los parámetros, se obtuvo del operador hidráulico (Proyecto Especial Tacna), de la Empresa MINSUR y de la Autoridad Local del Agua Tacna (ALA Tacna).

En la Tabla No. 3-12 se muestra los valores calculados del parámetro de suministro de agua y el indicador de eficiencia de operación a nivel mensual. Asimismo en la Figura No. 3-7 se muestra la variación mensual de dichos parámetros.

En todos los meses del año 2015 los parámetros de eficiencia tanto PEs y PEo se encuentran muy debajo del umbral planteado por ANA, en tal sentido debemos señalar que el uso de agua en esta etapa de operación de la minera al ser relativamente nueva está todavía por debajo de su demanda real.

Se encontró valores mínimo y máximos para PEs de 0,15 y 0,29 y en el caso PEo valores de 0,29 y 0,75, respectivamente.

Tabla No. 3-12 Valores de PEs y PEo representativos uso minero

<table>
<thead>
<tr>
<th>MES</th>
<th>Vuu (m3)</th>
<th>Vo (m3)</th>
<th>Vd (m3)</th>
<th>PEs</th>
<th>PEo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENE</td>
<td>18565.20</td>
<td>80352.00</td>
<td>41783.04</td>
<td>0.23</td>
<td>0.44</td>
</tr>
<tr>
<td>FEB</td>
<td>11716.93</td>
<td>72576.00</td>
<td>37739.52</td>
<td>0.16</td>
<td>0.31</td>
</tr>
<tr>
<td>MAR</td>
<td>11965.97</td>
<td>80352.00</td>
<td>41783.04</td>
<td>0.15</td>
<td>0.29</td>
</tr>
<tr>
<td>ABR</td>
<td>16456.27</td>
<td>77760.00</td>
<td>40435.20</td>
<td>0.21</td>
<td>0.41</td>
</tr>
<tr>
<td>MAY</td>
<td>17028.79</td>
<td>80352.00</td>
<td>41783.04</td>
<td>0.21</td>
<td>0.41</td>
</tr>
<tr>
<td>JUN</td>
<td>14425.11</td>
<td>77760.00</td>
<td>40435.20</td>
<td>0.19</td>
<td>0.36</td>
</tr>
<tr>
<td>JUL</td>
<td>26671.68</td>
<td>80352.00</td>
<td>41783.04</td>
<td>0.33</td>
<td>0.64</td>
</tr>
<tr>
<td>AGO</td>
<td>26671.68</td>
<td>80352.00</td>
<td>41783.04</td>
<td>0.33</td>
<td>0.64</td>
</tr>
<tr>
<td>SEP</td>
<td>23099.11</td>
<td>77760.00</td>
<td>40435.20</td>
<td>0.30</td>
<td>0.57</td>
</tr>
<tr>
<td>OCT</td>
<td>14732.28</td>
<td>80352.00</td>
<td>41783.04</td>
<td>0.18</td>
<td>0.35</td>
</tr>
<tr>
<td>NOV</td>
<td>13039.85</td>
<td>77760.00</td>
<td>40435.20</td>
<td>0.17</td>
<td>0.32</td>
</tr>
<tr>
<td>DIC</td>
<td>31341.82</td>
<td>80352.00</td>
<td>41783.04</td>
<td>0.39</td>
<td>0.75</td>
</tr>
<tr>
<td>PROMEDIO</td>
<td>18809.56</td>
<td>78840.00</td>
<td>40996.80</td>
<td>0.24</td>
<td>0.46</td>
</tr>
<tr>
<td>MAX</td>
<td>31341.82</td>
<td>80352.00</td>
<td>41783.04</td>
<td>0.39</td>
<td>0.75</td>
</tr>
<tr>
<td>MIN</td>
<td>11716.93</td>
<td>72576.00</td>
<td>37739.52</td>
<td>0.15</td>
<td>0.29</td>
</tr>
<tr>
<td>DESVET</td>
<td>6565.26</td>
<td>2333.67</td>
<td>1213.51</td>
<td>0.08</td>
<td>0.15</td>
</tr>
</tbody>
</table>
En primera instancia procedimos con la aplicación del protocolo establecido por el ANA en la Resolución Jefatural Nº 107-2016-ANA, 02 de mayo 2016, la cual dispone la pre-publicación del documento denominado “Lineamientos para Determinar y Establecer los Parámetros de Eficiencia para el Aprovechamiento de los Recursos Hídricos”.

En dicho documento se establecen los lineamientos para determinar los valores de los parámetros de eficiencia tanto para usuarios de servicio como de abastecimiento propio en los casos uso agrario, poblacional y otros usos.

Las superficies de las unidades agrícolas bajo riego en su mayoría son de tamaño muy pequeño, por tanto no es posible realizar el cálculo de los parámetros de eficiencia en esas condiciones, en tal sentido se planteó el cálculo a nivel de laterales de riego con la finalidad de contar con unidades de mayor tamaño. Este planteamiento se adecua muy bien zonas del país como la región sur donde normalmente se presentan parcelas de estas características.
4.1. Validación Eficiencia de Suministro

Como se indica, la eficiencia de suministro de agua permite medir los volúmenes de agua ahorrados en el interior de la unidad operativa o de producción. Los volúmenes de agua ahorrados forman parte de los recursos excedentes por el uso eficiente del recurso hídrico. Según lo propuesto por ANA, se evalúa con la siguiente expresión: $\text{PEs} = \frac{\sum \text{Vuu}}{\text{Vo}}$, donde Vuu, es el volumen de agua utilizado mensual (m3) y Vo, es el volumen de agua otorgado anual (m3).

4.1.1. Volumen de agua utilizado mensual (Vuu)

Corresponde a la suma de los volúmenes de agua utilizados en forma mensual para un periodo de un año. Esta variable es medida en la cabecera de su unidad operativa (usuarios no agrarios) o unidad de producción (usuarios agrarios), en el caso del bloque de riego bajo Uchusuma se dispone de una estación hidrométrica bien calibrada y una automática, las cuales reportan buena calidad de datos para lograr el objetivo de esta determinación, datos de registro diario.

El operador hidráulico Proyecto Especial Tacna en convenio con SENAMHI y ALA Tacna, opera el instrumento de medición, el cual ha sido validado por la Administración Local de Agua, indicándose que cumple con las características técnicas estándares. Se dispone de lecturas realizadas en forma diaria con su respectiva curva de calibración, la misma que se reportó en el primer producto concluyéndose que se encuentra en óptimas condiciones. Asimismo se dispone de una estación automática de registro en tiempo real que permite registrar lecturas de alturas de agua en forma permanente, las mismas que se transforman en caudal utilizando la curva de calibración. La estación Piedras Blancas se muestra en las Figuras No. 4-1 y 4-2. Asimismo en la Figura No. 4-3, se muestra la curva de calibración de dicha estación.
Figura No. 4-1 Estación limnimétrica y limnográfica Piedras Blancas

Figura No. 4-2 Panel de control de la estación automática
4.1.2. Volumen de agua otorgado (Vo)

El volumen otorgado corresponde al volumen anual máximo asignado al titular del derecho de uso de agua consignado en la licencia de uso de agua. Esto se valida con las resoluciones directorales emitidas por la autoridad local del agua y la AAA Ocoña – Caplina.

Se dispone de la Resolución Administrativa No. 009-2005-GRT/DRAT/ATDRT, del 18 de enero de 2005, la cual concede la licencia de uso de agua para uso agrario al bloque de riego Uchusuma, en forma mensual y por usuario. Ver Anexo No. 01.

En el caso del uso poblacional, se dispone de la Resolución Directoral No. 091-91-AG.DGAS, del 18 de octubre de 1991, la cual otorga licencia de uso de agua superficial a la Empresa Prestadora de Servicios Tacna (EPS Tacna). Ver Anexo No. 01.

Asimismo para otros usos tenemos la Resolución Directoral No. 323-2015-ANA/AAA I C-O del 6 de marzo de 2015, la cual en su parte resolutiva otorga licencia de uso de aguas subterráneas a la empresa MINSUR S.A. para el desarrollo de sus actividades mineras. La resolución sustentatoria se muestran en el Anexo No. 02.
4.2. Validación eficiencia de operación

Permite medir las pérdidas de agua durante el proceso productivo de la actividad que se desarrolla. Para reducir las pérdidas por la utilización del agua el usuario deberá incorporar mejores prácticas de manejo o el mejoramiento de los recursos propios o la incorporación de tecnologías modernas. Se calcula según la siguiente formulación: \(PEo = \frac{\sum Vuu}{Vd} \), donde, \(Vuu \) es el volumen agua utilizado por el usuario en el mes \((m^3)\), \(Vd \) es el volumen de agua demandado \((m^3)\).

4.2.1. Volumen de agua utilizado mensual (\(Vuu \))

De la misma manera que el parámetro anterior, corresponde a la suma de los volúmenes de agua utilizados en forma mensual para un periodo de un año. Esta variable es medida en la cabecera de su unidad operativa (usuarios no agrarios) o unidad de producción (usuarios agrarios), en la zona de estudio, está plenamente medida y se dispone de información diaria y por tanto a nivel mensual. La determinación de este volumen para el caso del bloque Uchusuma, así como para el uso poblacional es similar a lo descrito en el ítem anterior.

4.2.2. Volumen de agua demandado (\(Vd \))

Corresponde al volumen de agua demandado por el usuario para el periodo de un año. Esta variable es estimada tomando en cuenta las necesidades de agua para la actividad que realiza el usuario, en este caso se dispone de información de años anteriores en el caso del Plan de Cultivo y Riego, documento que nos sirvió para asignar la cantidad de agua demanda y poder realizar el cálculo del parámetro en cuestión.

Para el caso de la demanda de uso poblacional, se tuvo acceso a documentos de gestión de la EPS Tacna, de donde se obtuvo la demanda de agua para dicho uso. Asimismo, en coordinación con la minera MINSUR S.A., se solicitó información sobre su demanda para cubrir las operaciones mineras y sus usos complementarios de la minera, lo cual no fue alcanzado para los fines del presente estudio, utilizándose un valor obtenido de las presentaciones públicas que realiza la minera.
5. CONCLUSIONES Y RECOMENDACIONES

5.1. Conclusiones

- Una particularidad detectada en el cálculo de los parámetros para usuarios de servicio agrario es que hay tendencia de valores altos sobre el umbral a medida que las áreas de cultivo se reducen.
- En cuanto a la variabilidad de los parámetros de eficiencia también se obtenido que estos son altos en épocas de avenidas y bajos en períodos de estiaje.
- Los valores del parámetro de eficiencia de suministro en algunos casos superan la unidad, esto se puede explicar puesto que el sistema corresponde a uno regulado, por tanto la obtención de estos parámetros es bajo estas condiciones. Se cuenta un represamiento denominado Represa Paucarani en la zona altoandina además de contar con reservorios en parte baja, es decir en la cabecera del bloque con un volumen de regulación de aproximadamente 1,5 Hm3.
- Reconsiderar los valores de los límites permisibles para los parámetros de eficiencia tanto de captación de agua, distribución de agua, aprovechamiento de agua y cobertura de medidores, puesto que según los valores obtenidos en el presente trabajo muy difícilmente serán alcanzados.

5.2. Recomendaciones

- Capacitar al personal técnico y administrativo de las ALAs a nivel nacional a fin de que tomen conocimiento de la aplicación de estos parámetros de eficiencia como medidas de supervisión y control del trabajo de los operadores hidráulicos.
- Instar al operador hidráulico implemente la construcción de medidores y establezca un programa de mantenimiento y monitoreo de las estaciones hidrométricas.
- Realizar el mejoramiento de la estructura de partición de agua en Piedras Blancas, la cual distribuye el agua tanto para uso poblacional
como agrario. La operación de dicha estructura debe ser operada por el operador hidráulico (Proyecto Especial Tacna).

- Establecer un programa de monitoreo y control de captación en la quebrada Vilavilani a fin de reducir los caudales derivados y se establezca el cumplimiento de captaciones en función a permisos y licencias vigentes.

- Remitir los resultados de esta evaluación al operador hidráulico a fin de que tome en cuenta estos resultados y pueda implementar las medidas correctivas del caso.