ESTUDIO HIDROGEOLOGÍCO DEL VALLE SANA

AUTORIDAD NACIONAL DEL AGUA

ESTUDIO HIDROGEOLOGÍCO
PERSONAL DIRECTIVO

Sr Leoncio Alvarez Vasquez Jefe del INRENA
Ingº Enrique Salazar Salazar Intendente de Recursos Hídricos
Ingº Mario Aguirre Nuñez Director de Recursos Hídricos
Ingº Luis A. Bellido Laurel Administrador Técnico del Distrito de Riego Locumba - Sama

PERSONAL EJECUTOR

Ingº. Edwin Zenteno Tupiño Hidrogeólogo – geofísico
Ingº. Elizar A. Pérez Encalada Profesional en geofísica
Ingº. Rolando Rubio Flores Supervisor

PERSONAL DE APOYO

Sr. Julio Chunga Tapia Técnico en computación
Sr. Usbaldo Leonardo Lizana Operador de equipo geofísico – SEV - TDEM
Sr. Manuel A. Moreno Lazarte Técnico de campo – geofísica – SEV - TDEM
Sr. Jorge Laura Vallejos Técnico de campo – geofísica – SEV - TDEM
Sr. José R. Cherres Calle Técnico de campo – geofísica – SEV - TDEM
Sr. Fernando Guevara Sánchez Técnico de campo – geofísica – SEV - TDEM
Sr. Leonel D. Valle Villalobos Técnico de campo – geofísica – SEV - TDEM
Sr. Guillermo Linaja Gonzales Técnico de campo – inventario
ÍNDICE

1.0.0 INTRODUCCIÓN

1.1.0 Objetivos

1.1.1 Objetivo general
1.1.2 Objetivos específicos

1.2.0 Ámbito del estudio

2.0.0 ESTUDIOS REALIZADOS

3.0.0 CARACTERÍSTICAS GENERALES DEL ÁREA DE ESTUDIO

3.1.0 Ubicación
3.2.0 Vías de comunicación
3.3.0 Demografía

3.3.1 Población del valle
3.3.2 Población económicamente activa

3.4.0 Recursos agropecuarios e industriales

4.0.0 CARACTERÍSTICAS GEOLÓGICAS Y GEOMORFOLÓGICAS

4.1.0 Afloramientos rocosos

4.1.1 Formación huaylillas
4.1.2 Formación moquegua
4.1.3 Formación guaneros
4.1.4 Formación toquepala
4.1.5 Formación volcánico chocolate
4.1.6 Cenizas volcánicas
4.1.7 Rocas intrusivas

4.2.0 Depósitos aluviales

4.2.1 Cauce mayor o lecho actual del río
4.2.2 Primera terraza
4.2.3 Segunda terraza

4.3.0 Depósitos eólicos
4.4.0 Depósitos marinos
4.5.0 Depósitos fluviales
5.0.0 PROSPECCIÓN GEOFÍSICA

5.1.0 Introducción
5.2.0 Objetivos
5.3.0 Fundamento del método
 5.3.1 Particularidades del sondeo eléctrico vertical – SEV
 5.3.2 Particularidades del sondeo por transitorios electromagnéticos – TDEM

5.4.0 Trabajo de campo
5.5.0 Equipos utilizados
5.6.0 Trabajo de gabinete

6.0.0 INVENTARIO DE FUENTES DE AGUA SUBTERRÁNEA

6.1.0 Inventario de pozos
6.2.0 Clave para identificar los pozos
6.3.0 Tipo de pozos
 6.3.1 Pozos tubulares
 6.3.2 Pozos a tajo abierto
 6.3.3 Pozos mixtos

6.4.0 Estado de los pozos
 6.4.1 Pozos utilizados
 6.4.2 Pozos utilizables
 6.4.3 Pozos no utilizables

6.5.0 Uso de los pozos
 6.5.1 Pozos de uso doméstico
 6.5.2 Pozos de uso agrícola
 6.5.3 Pozos de uso pecuario
 6.5.4 Pozos de uso industrial

6.6.0 Rendimiento de los pozos

6.7.0 Explotación del acuífero mediante pozos
 6.7.1 Explotación en 2005

6.8.0 Características técnicas de los pozos
 6.8.1 Profundidad de los pozos
 6.8.2 Diámetro de los pozos
 6.8.3 Equipo de bombeo
6.8.3.1 Motores
6.8.3.2 Bombas

6.9.0 Explotación actual de las aguas subterráneas
6.9.1 Zona I : Sama - Inclán
6.9.2 Zona II : Sama - Las Yaras

7.0.0 EL RESERVORIO ACUÍFERO
7.1.0 Geometría del reservorio
7.1.1 Forma y límites
7.1.2 Dimensiones
7.2.0 El medio poroso
7.2.1 Litología
7.3.0 La napa freática
7.3.1 Morfología del techo de la napa freática
7.3.1.1 Zona I : Sama - Inclán
7.3.1.2 Zona II : Sama - Las Yaras
7.3.2 Profundidad del techo de la napa
7.3.2.1 Zona I : Sama - Inclán
7.3.2.2 Zona II : Sama - Las Yaras

8.0.0 HIDRÁULICA SUBTERRÁNEA
8.1.0 Introducción

9.0.0 HIDROGEOQUÍMICA
9.1.0 Recolección de muestras de agua subterránea
9.2.0 Resultados de los análisis físico-químicos
9.2.1 Conductividad eléctrica del agua
9.2.1.1 Zona I : Sama - Inclán
9.2.1.2 Zona II : Sama - Las Yaras
9.2.2 Dureza total y pH
9.3.0 Representación gráfica
9.3.1 Diagramas de Schoeller
9.3.2 Familias hidrogeoquímicas de las aguas subterráneas

9.4.0 Aptitud de las aguas para el riego
9.4.1 Clases de agua según la conductividad eléctrica
9.4.2 Clases de agua según el RAS y la conductividad eléctrica
9.4.3 Clases de agua según el contenido de boro

9.5.0 Potabilidad de las aguas
9.5.1 Análisis bacteriológico
9.5.1.1 Características biológicas del agua subterránea
9.5.2 Niveles de concentración de los iones cloruro, sulfato y magnesio
9.5.3 Nivel de sólidos totales disueltos (STD)
9.5.4 Niveles de dureza y pH
9.5.5 Calificación de las aguas subterráneas

10.0.0 RESUMEN DE RESULTADOS

11.0.0 CONCLUSIONES Y RECOMENDACIONES
11.1.0 Conclusiones
11.2.0 Recomendaciones

12.0.0 BIBLIOGRAFÍA
ANEXOS

ANEXO I
INVENTARIO DE FUENTES DE AGUA SUBTERRÁNEA

- Cuadros de características técnicas, medidas realizadas y volumen de explotación de los pozos.

ANEXO II
RESERVORIO ACUÍFERO

- Cuadros de la red piezométrica

ANEXO III
HIDROGEOQUÍMICA

- Cuadros de la red hidrogeoquímica
- Cuadros de variación de la conductividad eléctrica de la red hidrogeoquímica
- Cuadros de resultados de los análisis físico-químicos
<table>
<thead>
<tr>
<th>N°</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Población total según sexo y tipo de población – valle Sama - 2005</td>
</tr>
<tr>
<td>3.2</td>
<td>Población económicamente activa de 6 a más Años – valle Sama - 2005</td>
</tr>
<tr>
<td>3.3</td>
<td>Inventario de cultivos campaña agrícola Año 2004 – 2005– valle Sama</td>
</tr>
<tr>
<td>3.4</td>
<td>Inventario de cultivos campaña agrícola Año 2005 – 2006– valle Sama</td>
</tr>
<tr>
<td>6.1</td>
<td>Distribución de los pozos por distrito político - valle Sama - 2005</td>
</tr>
<tr>
<td>6.2</td>
<td>Código para la identificación de los pozos – valle Sama – 2005</td>
</tr>
<tr>
<td>6.3</td>
<td>Distribución de los pozos, según su tipo – valle Sama – 2005</td>
</tr>
<tr>
<td>6.4</td>
<td>Distribución de los pozos según su estado – valle Sama – 2005</td>
</tr>
<tr>
<td>6.5</td>
<td>Distribución de los pozos utilizados según su tipo – valle Sama – 2005</td>
</tr>
<tr>
<td>6.6</td>
<td>Distribución de los pozos utilizables según tipo – valle Sama – 2005</td>
</tr>
<tr>
<td>6.7</td>
<td>Tipo de pozos utilizados según su uso – valle Sama – 2005</td>
</tr>
<tr>
<td>6.8</td>
<td>Variación de los Rendimientos según el tipo de pozo – valle Sama 2005</td>
</tr>
<tr>
<td>6.9</td>
<td>Volúmenes de explotación de las aguas subterráneas según su uso – valle Sama 2005</td>
</tr>
<tr>
<td>6.10</td>
<td>Volúmenes de explotación de las aguas subterráneas por tipo de pozo valle Sama – 2005</td>
</tr>
<tr>
<td>6.11</td>
<td>Profundidades actuales máximas y mínimas, según el tipo de pozo – valle Sama – 2005</td>
</tr>
<tr>
<td>6.12</td>
<td>Distribución del equipamiento de los pozos - valle Sama – 2005</td>
</tr>
<tr>
<td>6.13</td>
<td>Motores y bombas que predominan en el valle Sama – 2005</td>
</tr>
<tr>
<td>6.14</td>
<td>Variación de los volúmenes de explotación (m³/año) por zonas - valle Sama – 2005.</td>
</tr>
<tr>
<td>7.1</td>
<td>Características de la morfología de la napa freática - valle Sama - 2005</td>
</tr>
<tr>
<td>7.2</td>
<td>Profundidad de la napa freática - valle Sama – 2005</td>
</tr>
<tr>
<td>9.1</td>
<td>Conductividades eléctricas en el área de estudio - valle Sama – 2005</td>
</tr>
<tr>
<td>9.2</td>
<td>Rango de calidad de las aguas - valle Sama – 2005</td>
</tr>
<tr>
<td>9.3</td>
<td>Variación de la dureza - valle Sama – 2005</td>
</tr>
<tr>
<td>9.4</td>
<td>Clasificación del agua según el pH</td>
</tr>
<tr>
<td>9.5</td>
<td>Clases de agua según el pH - valle Sama – 2005</td>
</tr>
<tr>
<td>9.6</td>
<td>Familias hidrogeoquímicas en el área de estudio por zonas - valle Sama – 2005</td>
</tr>
<tr>
<td>9.7</td>
<td>Clasificación del agua para riego según Wilcox</td>
</tr>
<tr>
<td>9.8</td>
<td>Clasificación del agua según la conductividad eléctrica – zona I</td>
</tr>
<tr>
<td>9.9</td>
<td>Clasificación del agua según la conductividad eléctrica – Zona II</td>
</tr>
<tr>
<td>9.10</td>
<td>Clasificación del agua según la conductividad eléctrica por zonas</td>
</tr>
<tr>
<td>9.11</td>
<td>Clasificación del agua según el RAS y la conductividad eléctrica por zonas en el valle Sama – 2005</td>
</tr>
<tr>
<td>9.12</td>
<td>Clasificación de las aguas para riego según el contenido de boro</td>
</tr>
<tr>
<td>9.13</td>
<td>Clasificación de las aguas según el contenido de boro valle Sama 2005</td>
</tr>
<tr>
<td>9.14</td>
<td>Límites máximos tolerables</td>
</tr>
<tr>
<td>9.15</td>
<td>Resultado de los análisis microbiológicos de las aguas subterráneas – valle Sama – 2005</td>
</tr>
<tr>
<td>9.16</td>
<td>Comparación entre los límites máximos tolerables y los rangos obtenidos de las muestras de agua analizadas – valle Sama – 2005</td>
</tr>
<tr>
<td>9.17</td>
<td>Variación de los sólidos totales disueltos (STD)</td>
</tr>
</tbody>
</table>
INTRODUCCIÓN

1.1.0 Antecedentes
1.2.0 Objetivos
1.3.0 Ámbito del estudio
1.0.0 INTRODUCCIÓN

La costa sur del país tiene extensos terrenos fértiles, pero debido a la escasez del recurso hídrico no puede ser aprovechado en su totalidad, sobre todo en las extensas pampas en ambas márgenes del valle, por lo que se hace necesario investigar y si fuera posible encontrar una solución al problema. Por otro lado, el valle de Sama se ha convertido en estos últimos años, en una zona de gran importancia para su vida socio económica, pero para lograr un desarrollo satisfactorio se requiere una adecuada planificación, mediante el uso eficiente de sus recursos.

Actualmente el valle presente problemas en relación a su disponibilidad y calidad de las aguas subterráneas como complemento a las necesidades de los cultivos que se vienen desarrollando.

Ante esta situación, es importante realizar el presente estudio, principalmente la prospección geofísica, cuyo resultado permitirá ampliar el conocimiento hidrogeológico del acuífero del valle Sama.

1.1.0 Objetivos

1.1.1 Objetivo general

Evaluar el estado actual de los recursos hídricos subterráneos en el valle Sama.

1.1.2 Objetivos específicos

Son los siguientes:

- Identificar las fuentes de agua subterráneas en el valle.
- Cuantificar el volumen explotado del acuífero.
- Determinar la geometría del acuífero, tanto lateral como en profundidad.
- Determinar la geometría del basamento impermeable.
- Zonificar el acuífero de acuerdo a sus condiciones geoelectrías (SEV y TDEM).
- Determinar el comportamiento de la napa freática.
- Determinar la calidad de las aguas subterráneas.

1.2.0 Ámbito del estudio

El área de estudio está ubicada en el valle Sama y abarca por el norte, con los sectores Pampa Cerro del Medio, Pampa Cerro Cascoso y Pampa Pie de Candela, por el este con los sectores Proter, Lomas de Sama Grande y El Alto (distrito de Sama - Inclán); por el sur con los Pampa del Pedregal, Puesto de Aduana Tomásiri, Pampa de Los Cerrillos y Pampa Cruz Verde; y por el oeste, con los sectores Boca del Río, Playas Las Gabiotas, Los Hornos y Vila Vila.
ESTUDIOS REALIZADOS
2.0.0 ESTUDIOS REALIZADOS

En el valle Sama, se han desarrollado escasos trabajos sobre las aguas subterráneas, que se nombran a continuación:

- “Explotación de Aguas Subterráneas en la Costa del Perú” - Harold Cokling - 1938

- “Investigación de las Aguas Subterráneas en la Costa y Sierra” - Marcel Salignac - 1959

- “Inventario, Evaluación y Uso Racional de los Recursos Naturales de la Costa. Cuenca de los ríos Moquegua, Locumba, Sama y Caplina” - ONERN - 1976

- “Evaluación de los Problemas de Salinidad y Drenaje. Valles de Tacna (Caplina), Sama, Locumba, Osmore, Tambo, Siguas y Vitor” - Dirección General de Aguas - 1978
CARACTERÍSTICAS GENERALES DEL ÁREA DE ESTUDIO

3.1.0 Ubicación
3.2.0 Vías de comunicación
3.3.0 Demografía
3.4.0 Recursos agropecuarios
3.0.0 CARACTERÍSTICAS GENERALES

3.1.0 Ubicación

El área de estudio está ubicada en la costa norte del país, aproximadamente a 1265 Km. al norte de la ciudad de Lima.

Políticamente pertenece a la región, departamento y provincia de Tacna y comprende ocho (02) distritos: Sama - Inclán y Sama – Las Yaras.

Geográficamente, el área se encuentra comprendida entre las siguientes coordenadas del Sistema Transversal Mercator:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Este</td>
<td>311,000 m</td>
<td>y</td>
<td>356,000 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norte</td>
<td>7°980,000 m</td>
<td>y</td>
<td>8°042,000 m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2.0 Vías de comunicación

La infraestructura vial del valle, está constituida por dos (02) redes fundamentales:

- La red primaria representada por la carretera Panamericana Sur, la misma que cruza el valle de norte a sur, uniendo a los poblados de Sama - Inclán y Sama – Las Yaras por el norte y a Tacna por el sur.

- La red secundaria constituida por la carretera longitudinal que se inicia en el pueblo de Sama – Las Yaras, la misma que interconecta los poblados de Vila Vila y Boca del Río, haciendo viable la conexión entre el valle y la parte baja en el límite con el litoral.

A continuación indicamos algunas distancias aproximadas:

- Sama – Las Yaras – Boca del Río y Vila Vila, a través de trocha carretable, con una longitud de 26 kilómetros.
- Sama – Las Yaras – Sama - Inclán, carretera de penetración asfaltada con una longitud de 12 kilómetros, con tramo la trocha carretable de 20 kilómetros, la cual llega a la localidad de Boruca (parte alta del valle).

- El valle Sama (parte cultivable) se comunica en forma interna, mediante trochas carretables a distintos lugares donde se llevó acabo el presente estudio.
3.3.0 Demografía

3.3.1 Población del valle

En el cuadro Nº 3.1 se muestra el resultado del IX Censo Nacional de Población realizado en 1993, del cual se deduce que la población total del valle de Sama es de 3,161.00 habitantes, observándose que la densidad de la población de sexo masculino es relativamente mayor con relación al sexo femenino.

A lo anterior agregaríamos que el mayor número de pobladores (1,705.00 habitantes) se concentra en la zona rural (53.94 %).

Por otro lado, la mayor densidad de la población está conformada por habitantes cuyas edades oscilan entre 15 y 29 años (26.32 %); observándose que la población de ambos sexos tienen porcentajes casi iguales. Ver cuadro Nº 3.1

CUADRO Nº 3.1
POBLACIÓN TOTAL SEGÚN SEXO Y TIPO DE POBLACIÓN
VALLE SAMA – 2005

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Población Total</th>
<th>Urbanas</th>
<th>Rurales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Hombres</td>
<td>Mujeres</td>
</tr>
<tr>
<td>Menores de 5 años</td>
<td>349</td>
<td>181</td>
<td>168</td>
</tr>
<tr>
<td>De 5 a 14 años</td>
<td>696</td>
<td>383</td>
<td>313</td>
</tr>
<tr>
<td>De 15 a 29 años</td>
<td>832</td>
<td>464</td>
<td>368</td>
</tr>
<tr>
<td>De 30 a 44 años</td>
<td>592</td>
<td>334</td>
<td>258</td>
</tr>
<tr>
<td>De 45 a 64 años</td>
<td>478</td>
<td>303</td>
<td>175</td>
</tr>
<tr>
<td>De 65 a más años</td>
<td>214</td>
<td>139</td>
<td>75</td>
</tr>
<tr>
<td>TOTAL</td>
<td>3,161</td>
<td>1,804</td>
<td>1,357</td>
</tr>
</tbody>
</table>

Resultados Definitivos del Censo Nacional: IX de Población y IX de Vivienda
Fuente: Instituto Nacional de Estadística e Informática (INEI)

3.3.2 Población económicamente activa

En el cuadro Nº 3.2 se aprecia que 1,324 habitantes forman parte de la Población Económicamente Activa (P.E.A.) representando el 48.43 % de la población total; mientras que la Población Económicamente No Activa (P.E.N.A) está constituida por 1,410 habitantes representando el 51.57 %. La mayor concentración del (P.E.A.), se ubica en el distrito de Sama – Las Yaras con 818 habitantes.

En el valle, la mayor densidad de la Población Económicamente Activa, la conforman los habitantes cuyas edades oscilan entre 15 y 29 años (16.75 %), mientras que la mayor densidad de la Población Económicamente No Activa, la conforman habitantes cuyas edades oscilan entre 6 y 14 años (21.84 % del total de la población).
Por otro lado, la P.E.A. en menor proporción; lo constituyen pobladores (21) cuyas edades oscilan entre 6 y 14 años (0.77 %), mientras que, la Población Económicamente No Activa en menor proporción, la conforman habitantes cuyas edades varían de 65 a más años (3.26 % del total).

CUADRO N° 3.2
POBLACIÓN ECONÓMICAMENTE ACTIVA DE 6 A MÁS AÑOS
VALLE SAMA – 2005

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Total</th>
<th>6 a 14 años</th>
<th>15 a 29 años</th>
<th>30 a 44 años</th>
<th>45 a 64 años</th>
<th>65 a más años</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distrito: Sama - Sama - Incán</td>
<td>972</td>
<td>217</td>
<td>321</td>
<td>168</td>
<td>181</td>
<td>85</td>
</tr>
<tr>
<td>P.E.A</td>
<td>506</td>
<td>12</td>
<td>200</td>
<td>119</td>
<td>123</td>
<td>52</td>
</tr>
<tr>
<td>P.E.N.A.</td>
<td>466</td>
<td>205</td>
<td>121</td>
<td>49</td>
<td>58</td>
<td>33</td>
</tr>
<tr>
<td>Distrito: Sama – Las Yaras</td>
<td>1,762</td>
<td>401</td>
<td>511</td>
<td>424</td>
<td>297</td>
<td>129</td>
</tr>
<tr>
<td>P.E.A</td>
<td>818</td>
<td>9</td>
<td>258</td>
<td>273</td>
<td>205</td>
<td>73</td>
</tr>
<tr>
<td>P.E.N.A.</td>
<td>944</td>
<td>392</td>
<td>253</td>
<td>151</td>
<td>92</td>
<td>56</td>
</tr>
<tr>
<td>Total del Valle</td>
<td>2,734</td>
<td>618</td>
<td>832</td>
<td>592</td>
<td>478</td>
<td>214</td>
</tr>
<tr>
<td>P.E.A. del Valle</td>
<td>1,324</td>
<td>21</td>
<td>458</td>
<td>392</td>
<td>328</td>
<td>125</td>
</tr>
<tr>
<td>P.E.N.A. del Valle</td>
<td>1,410</td>
<td>597</td>
<td>374</td>
<td>200</td>
<td>150</td>
<td>89</td>
</tr>
</tbody>
</table>

(Reproducidos Definitivos del Censos Nacionales: IX de Población y IV de Vivienda
Fuentes: Instituto Nacional de Estadística e Informática (INEI)

3.4.0 Recursos agropecuarios e industriales

La superficie total de la cuenca del río Sama es de 4,645 Km² de los cuales aproximadamente el 13.70 % constituye la cuenca húmeda. El valle cuenta con una superficie agrícola de 4,420.47 há, de las cuales 2,675.04 há se encuentran bajo riego.

El cultivo predominante en el valle es la caña de azúcar, con 21,012.54 há (88.63 %), seguido del maíz con 1,910.55 há (8.06 %) y en menor proporción; el espárrago, alfalfa, vid, frutales, aji, tomate y cultivos de pan llevar, los cuales cubren la diferencia del porcentaje existente. Ver cuadro N° 3.3.

Debe indicarse que no se ha considerado a la comisión de regantes La Pampa, debido a que ésta no recibe agua directa del río.
CUADRO Nº 3.3
INVENTARIO DE CULTIVOS DE LA CAMPAÑA AGRÍCOLA AÑO 2004 - 2005
VALLE SAMA

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Cultivo</th>
<th>Área (Has)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alfalfa</td>
<td>975.65</td>
<td>59.00</td>
</tr>
<tr>
<td>2</td>
<td>Maíz Chalero</td>
<td>455</td>
<td>27.51</td>
</tr>
<tr>
<td>3</td>
<td>Cebolla Colorado</td>
<td>110.80</td>
<td>6.70</td>
</tr>
<tr>
<td>4</td>
<td>Olivo Sevillana</td>
<td>95.16</td>
<td>5.76</td>
</tr>
<tr>
<td>5</td>
<td>Aji Amarillo</td>
<td>7.00</td>
<td>0.42</td>
</tr>
<tr>
<td>6</td>
<td>Aji Paprika</td>
<td>4.00</td>
<td>0.24</td>
</tr>
<tr>
<td>7</td>
<td>Algodón Trenzado</td>
<td>6.07</td>
<td>0.37</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1,633.68</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Fuente: Intención de siembra - Campaña 2004 - 2005 ATDR-L-S

CUADRO Nº 3.4
INVENTARIO DE CULTIVOS DE LA CAMPAÑA AGRÍCOLA AÑO 2005 - 2006
VALLE SAMA

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Cultivo</th>
<th>Área (Has)</th>
<th>Área Pampa Protec (Has)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alfalfa</td>
<td>1,030.50</td>
<td>47.00</td>
</tr>
<tr>
<td>2</td>
<td>Maíz Chalero</td>
<td>520</td>
<td>75.00</td>
</tr>
<tr>
<td>3</td>
<td>Cebolla Colorado</td>
<td>90.00</td>
<td>17.00</td>
</tr>
<tr>
<td>4</td>
<td>Olivo Sevillana</td>
<td>96.33</td>
<td>286.80</td>
</tr>
<tr>
<td>5</td>
<td>Aji Amarillo</td>
<td>7.00</td>
<td>18.50</td>
</tr>
<tr>
<td>6</td>
<td>Aji Paprika</td>
<td>8.00</td>
<td>26.00</td>
</tr>
<tr>
<td>7</td>
<td>Papa</td>
<td>0.00</td>
<td>2.00</td>
</tr>
<tr>
<td>8</td>
<td>Lechuga</td>
<td>0.00</td>
<td>7.30</td>
</tr>
<tr>
<td>9</td>
<td>Habas</td>
<td>0.00</td>
<td>6.50</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1,751.83</td>
<td>706.10</td>
</tr>
</tbody>
</table>

Fuente: Intención de siembra - Campaña 2005 - 2006 ATDR-L-S

De lo anterior, se deduce que la principal actividad económica de la región es la agricultura; mientras que en segundo orden es la ganadería, especialmente para la producción de leche, actividad que se desarrolla en todo el valle en la zona cultivable, además existe la crianza de ganado ovino, vacuno, equino, caprino y porcino.

La industrialización de la leche y el intercambio de productos entre las diferentes ciudades del departamento de Tacna, constituye una importante vía para el desenvolvimiento económico de la región.
CARACTERÍSTICAS GEOLÓGICAS
Y GEOMORFOLÓGICAS

1. Afloramientos rocosos
2. Depósitos aluviales
3. Depósitos cólicos
4. Depósitos marinos
5. Depósitos fluviales
4.0.0 CARACTERÍSTICAS GEOLÓGICAS Y GEOMORFOLÓGICAS

En toda investigación hidrogeológica es importante tener conocimiento de la estructura geológica de la zona; en relación a la naturaleza de los materiales existentes y a la distribución de los mismos tanto permeables y/o impermeables, fallas, afloramientos del zócalo y otros; debido a que éstas características condicionan el funcionamiento del acuífero y el desplazamiento de las aguas subterráneas.

En ese sentido; el presente estudio ha sido realizado a nivel de reconocimiento y a ha tenido como objetivo determinar las características geológicas orientadas a la interpretación de la hidrogeología del valle Sama. Para lograr el objetivo propuesto, se ha realizado estudios relativos a su constitución litológica y estratigráfica.

Para una mayor comprensión de la descripción de los paisajes geomórficos se ha establecido en el área de estudio cinco (05) unidades hidrogeológicas:

- Afloramientos rocosos
- Depósitos aluviales
- Depósitos eólicos
- Depósitos marinos
- Depósitos fluviales

El levantamiento geológico-geomorfológico del área de estudio, se muestra en la Lámina N° 4.1.

4.1.0 Afloramientos rocosos

En el área de estudio, la estructura rocosa que rodea a la llanura pertenece, mayormente a la formación Huayllillas; mientras que en menor proporción está rodeado por las formaciones Guaneros y Moquegua. En la parte final el río Sama en su margen derecha aguas abajo está rodeado por rocas intrusitas (dioritas y granodioritas mayormente).

Además en menor proporción el valle se ve rodeado por muchos componentes que afloran en diferentes lugares de la zona en estudio.

A continuación se describen las características litológicas y estratigráficas de las formaciones que afloran en el valle, cuyas edades geológicas van desde Jurásico superior hasta el Cuaternario reciente.
4.1.1 Formación Huayllillas (Ts – vhu)

Es una secuencia de una gruesa serie de piroclásticos, principalmente tufos que cubren discordantemente a la formación Moquegua, cuya edad se discute entre el Mioceno y el Plioceno, se considera a la formación Huayllillas ubicada en los niveles superiores del Plioceno del Terciario Superior cuyo afloramiento consiste de tufos blancos riolíticos en la parte inferior, tufos dacíticos compactos de color rosado en la parte media y tufos blancos riolíticos en la parte superior con un espesor estimado de 500 m.

Afloran a manera de sombreros sobre las cumbres de algunos cerros como Munipata, Alto Grande, Gordo, Alto de Chipe y cerro del Medio. (Ver fotografía N° 03.)

4.1.2 Formación Moquegua (Ts – mo)

Con este nombre se conoce regionalmente en el sur del Perú a una formación de origen continental que alcanza gran distribución a lo largo de la costa. La formación consiste de capas de capas de areniscas, areniscas grises arcósicas con lentes de conglomerados y bancos de tufos volcánicos cuya edad ha sido asignada al Terciario superior, en la misma pampa estas rocas se encuentran cubiertas parcialmente por los depósitos aluviales del Cuaternario.

Las relaciones estratigráficas de esta formación son las siguientes: el contacto inferior es discordante con la formación Guaneros en el área de Ilo; mientras que en Locumba yace sobre la superficie erosionada de rocas intrusivas y del volcánico Toquepala. Superiormente estos depósitos están cubiertos en discordancia por la formación Huayllillas y los depósitos aluviales recientes.

Los afloramientos del Moquegua inferior se encuentran en el fondo de las Quebradas Honda y Seca; mientras que en el Moquegua superior se encuentran formando colinas bajas y superficies casi planas. (Ver fotografía N° 04.)

4.1.3 Formación Guaneros (Js – g)

Esta formación está compuesta de capas sedimentarias de origen marino intercaladas con gruesos miembros volcánicos. Esta formación yace con discordancia sobre el volcánico Chocolate y debajo del volcánico Toquepala. Su edad es Calloviana, cuyas rocas afloran en el borde de la planicie Costanera.

Litológicamente está constituida por gruesas capas de volcánicos andesíticos con intercalaciones de areniscas rojizas y grises, de grano variable entre medio a fino y, secundariamente de capas de caliza de color gris a chocolate.
Esta formación aflora en los cerros de La Yarada, Miraflores, Siete Colores, Punta Colorada, Angola y Moreno, en la desembocadura del Río Sama (Playa Boca del Río).

4.1.4 Formación Toquepala (KTi – to)

Con este nombre se conoce a una parte de las rocas volcánicas del grupo Toquepala que afloran en la parte media y baja del frente andino del sur del Perú. Litológicamente la formación Toquepala está conformada en la parte inferior por aglomerados riolíticos; mientras que en la parte superior por derrames andésíticos de color pardo oscuro a marrón, de textura variable. El espesor de la formación se ha estimado en 1.00 kilómetro.

La formación subyace con discordancia angular a la formación Moquegua del Terciario Superior, en cambio su base no se observa, aunque en lugares cercanos sobreyacen discordantemente a las formaciones Yura y Guaneros.

4.1.5 Formación Volcánico Chocolate (Ji – vch)

El Volcánico Chocolate en el cuadrángulo de Locumba se hallan dos exposiciones, uno de ellos ubicado al norte del cerro Meca Grande y el otro al sur formando el Morro Sama. En este último lugar se observa en la base, una serie de derrames gris o scuros, en blancos gruesos, con intercalaciones de brechas marrones y andesitas porfíticas o afaníticas en la parte superior.

Litológicamente estas rocas están representadas predominantemente por derrames andésíticos. La formación volcánico del área en estudio se puede correlacionar con el volcánico Chocolate de Arequipa y, por tanto, son de edad jurásica inferior.

4.1.6 Cenizas Volcánicas (Q – c)

En diferentes lugares de las pampas se observan pequeñas acumulaciones de cenizas volcánicas de color blanco, blandas hasta pulverulentas, mezcladas con grava fina.

Estos materiales generalmente se encuentran en suaves hondonadas cubriendo a los aluviales y formaciones mas antiguas.

Litológicamente estas rocas están representadas predominantemente por derrames andésíticos. La formación volcánico del área en estudio se puede correlacionar con el volcánico Chocolate de Arequipa y, por tanto, son de edad jurásica inferior.
4.1.7 Rocas intrusivas

Las rocas intrusivas forman parte del gran batolito de la costa, cuyas relaciones indican que el emplazamiento es de edad pre - Terciario superior y puede ubicarse entre el Cretácico Superior y comienzos del Terciario inferior. Por su composición las rocas intrusivas varían desde diorita gabroide hasta granito, pero predominan las granodioritas. En el área comprendida entre cerro Puite y Morro Sama no hasido posible hacer tal separación, pues las rocas varían de composición muy a menudo de un sitio a otro sin mostrar contactos definidos.

A continuación se describen las características físicas, mineralógicas y relaciones de contactos de los diferentes tipos de rocas intrusivas.

Diorita (KTi – di)

La diorita en muestra fresca es una roca de color oscuro a negro, holocrystalina con textura granular de grano medio a grueso, compuesta por plagioclasas gris blanquecinas, abundante hornablenda en cristales de 6 a 8 milímetros de largo, biotita y escaso cuarzo.

Las mejores exposiciones de esta roca se observan en el borde de las terrazas frente a la línea de costa y en los cortes de las quebradas que bajan al mar, también se observa al norte del Morro Sama constituyendo una angosta faja que se extiende desde la orilla del mar hasta las escarpas que a cienden a los cerros Meca Grande y Meca Chica. Carece de importancia para los fines que persigue el estudio.

Granodiorita (KTi – gd)

Se presenta intruyendo a la formación Tamayo, al volcánico Chocolate y también a las rocas de la formación Guaneros, esta roca es holocrystalina, de textura granular, con color uniforme gris claro a blanquecino y muchas veces teñida superficialmente de color rojizo por descomposición de las numerosas vetillas de hematita.

Los minerales constituyentes de esta roca observados en muestras frescas consisten principalmente de plagioclasas gris claras de tamaño variable entre 2 y 10 milímetros de largo, granos redondeados de cuarzo y en menor proporción de ortosa y biotita.

Las rocas dioritas – granodioritas se observa desde el cerro Puite hasta el Morro Sama los cerros de la cadena costanera están formados de rocas intrusivas cuya composición varía de diorita a granodiorita, ambos tipos de rocas se encuentran en el campo pasando gradualmente del uno al otro sin ofrecer contactos netos, presentando así una distribución muy irregular.
4.2.0 Depósitos aluviales (Q-al)

El material aluvial está constituido por gravas semiconsolidadas con intercalaciones lentiformes de arena gruesa, arcilla y tufos redepositados; de estratificación mas o menos horizontal. El material de estos depósitos ha sido transportado por aguas corrientes desde las partes altas de los flancos andinos y depositados en forma de abanicos aluviales de piedemonte, en la superficie de la depresión costanera, cuyo grueso de estos aluviales varía desde pocos centímetros hasta un máximo de 60 metros, comprobados en los cortes de las numerosas quebradas y también en el registro de las perforaciones por agua subterránea en las pampas cerca a las Yaras – Sama.

Estos materiales sobreyacen con discordancia a las formaciones mas antiguas incluyendo a las rocas intrusivas. (Ver fotografías N° 07 y 08)

En el campo se ha observado la existencia de dos etapas de deposición y posterior erosión de los sedimentos, los que han dado lugar al entallamiento de dos (02) niveles antiguos del valle.

4.2.1 Cauce mayor o lecho actual del río (Q – t₀)

Está constituida por áreas donde discurre el río Sama. En el curso del río se pueden observar materiales que son depositados en diferentes sectores del valle hasta llegar a la desembocadura del Océano Pacífico (entre los sectores Boca del Río y Vila Vila). Los materiales encontrados son arenas, gravas, arcillas y cantos rodados. (Ver fotografías N°s 07 y 08)

4.2.2 Primera terraza (Q – t₁)

- Río Sama (margen derecha)

Terraza delimitada por escarpas cuyo desnivel con relación al lecho del río, varía entre 1.00 y 2.30 m en su margen derecha; mientras que en la margen derecha entre 3.50 y 5.90 m.

En ciertos sectores del valle se observan cortes litoógicos verticales de las terrazas, tal como se describen a continuación:

- Sector Sama Grande

Perfiles localizados en el distrito de Sama - Inclán

Corte N° 1

0.00 – 0.60 m : Material arcillo limoso
0.60 – 1.10 m : Material limo arcilloso
1.10 – 1.30 m : Material con presencia de grava y arena
Corte N° 2

0.00 – 1.00 m : Material arcillo limoso
1.00 – 1.20 m : Material areno limoso
1.20 – 1.65 m : Material limo arcilloso
1.65 – 1.95 m : Material con presencia de grava y arena

- Sector Poquera

Perfiles localizados en el distrito de Sama - Inclán

Corte N° 1

0.00 – 0.30 m : Material areno arcilloso
0.30 – 1.50 m : Material arcillo limoso
1.50 – 1.70 m : Material con presencia de grava, arena y limo

Corte N° 2

0.00 – 0.50 m : Material arcillo limoso
0.50 – 0.75 m : Material areno limoso
0.75 – 1.00 m : Material limo arenoso

- Sector Los Pinos

Perfiles localizados en el distrito de Sama – Las Yaras

0.00 – 0.20 m : Material arcillo arenoso
0.20 – 1.10 m : Material arcilloso
1.10 – 1.80 m : Material con presencia de grava, arena y limo

- Sector Las Yaras

Perfil localizado en el distrito de Sama – Las Yaras

0.00 – 0.30 m : Material arcillo limoso
0.30 – 2.10 m : Material limoso
2.10 – 2.30 m : Material con presencia de grava y arena

- Río Sama (margen izquierda)

En esta parte del río (distrito de Sama – Las Yaras) se puede apreciar diferentes perfiles que se describen a continuación:
• Sector Sama Grande

Perfiles localizados en el distrito de Sama - Inclán

Corte Nº 1

0.00 – 0.50 m : Material arcilloso y cantos rodados en la superficie
0.50 – 15.00 m : Material con presencia de ceniza volcánica y limos
15.00 – 53.00 m : Material limo arcilloso con presencia de grava mediana
53.00 – 55.00 m : Material con presencia de grava mediana, arena y limo

Corte Nº 2

0.00 – 0.80 m : Material arcillo limoso
0.80 – 13.50 m : Material con presencia de ceniza volcánica y limo
13.50 – 48.00 m : Material limoso con intrusiones de grava mediana
48.00 – 50.50 m : Material con presencia de grava mediana, limo y arena

• Sector Poquera

Perfiles localizados en el distrito de Sama - Inclán

Corte Nº 1

0.00 – 0.60 m : Material arcilloso y cantos rodados en la superficie
0.60 – 25.50 m : Material limoso y ceniza volcánica
25.50 – 40.00 m : Material limoso con presencia de grava
40.00 – 42.50 m : Material limo arenoso y presencia de grava

Corte Nº 2

0.00 – 0.80 m : Material arcilloso y cantos rodados en la superficie
0.80 – 15.00 m : Material limo arcilloso y ceniza volcánica
15.00 – 25.00 m : Material limoso con presencia de grava mediana
25.00 – 26.60 m : Material limo arenoso con intrusiones de grava
• **Sector Los Pinos**

Perfiles localizados en el distrito de Sama – Las Yaras

- 0.00 – 0.50 m : Material arcilloso con intrusiones de cantos rodados
- 0.50 – 8.30 m : Material limo arcilloso
- 8.30 – 12.50 m : Material con presencia de grava y limo
- 12.50 – 13.50 m : Material areno limoso con presencia de grava

• **Sector Las Yaras**

Perfil localizado en el distrito de Sama – Las Yaras

- 0.00 – 1.10 m : Material arcilloso con intrusiones de cantos rodados
- 1.10 – 6.00 m : Material limo arcilloso
- 6.00 – 9.20 m : Material con presencia de grava y limo
- 9.20 – 10.50 m : Material areno limoso con intrusion de grava mediana

• **Sector Cuilona**

- 0.00 – 0.60 m : Material arcillo limoso
- 0.60 – 3.10 m : Material areno limoso
- 3.10 – 5.10 m : Material con presencia de pequeños cantos rodados, limo y arena
- 5.10 – 5.90 m : Material con presencia de grava mediana y arena

• **Sector Haras Capuli**

- 0.00 – 0.50 m : Material arcillo arenoso
- 0.50 – 2.50 m : Material con presencia de pequeños cantos rodados y limo finos
- 2.50 – 3.50 m : Material con presencia de grava mediana, limo y arena

Ver fotos N°s 07 y 08.

• **Sector El Golpe**

- 0.00 – 0.40 m : Material arcillo arenoso
- 0.40 – 1.50 m : Material con presencia de cantos rodados y limo finos
- 1.50 – 2.50 m : Material con intrusion de grava y arena
4.2.3 Segunda terraza (Q – t₁)

- Río Sama (margin derecha)

Terraza delimitada por escarpas cuyo desnivel con relación al lecho del río, varía entre 6.00 y 40.00 m.

En ciertos sectores del valle se observan cortes litológicos verticales de estas terrazas, tal como se describen a continuación:

- Sector Sama Grande

Perfil localizado en el distrito de Sama - Inclán.

Corte Nº 1

- 0.00 – 0.50 m : Material limo arcilloso
- 0.50 – 7.00 m : Material arcillo limoso con presencia de cantos rodados y cenizas volcánicas
- 7.00 – 49.50 m : Material mayormente con presencia de cantos rodados, limo y arena

Corte Nº 2

- 0.00 – 0.80 m : Material limo arcilloso
- 0.80 – 4.90 m : Material arcillo limoso con presencia de pequeños cantos rodados y cenizas volcánicas
- 4.90 – 45.00 m : Material mayormente con presencia de cantos rodados y limo

- Sector Poquera

Perfil localizado en el distrito de Sama - Inclán

Corte Nº 1

- 0.00 – 0.50 m : Material arcillo limoso
- 0.50 – 4.70 m : Material arcillo limoso con presencia de cantos rodados y cenizas volcánicas
- 4.70 – 38.00 m : Material mayormente con presencia de cantos rodados y limo

Corte Nº 2

- 0.00 – 0.90 m : Material arcillo limoso
- 0.90 – 5.50 m : Material arcillo limoso con presencia de cantos rodados y cenizas volcánicas
- 5.50 – 25.00 m : Material mayormente con presencia de cantos rodados e intrusión de limos
• Sector Buena Vista

Perfil localizado en el distrito de Sama – Las Yaras

0.00 – 0.40 m : Material arcillo limoso y cantos rodados en la superficie
0.40 – 12.50 m : Material mayormente con presencia de cantos rodados e intrusión de limos

• Sector Las Yaras

Perfil localizado en el distrito de Sama – Las Yaras

0.00 – 0.30 m : Material arcillo limoso y cantos rodados en la superficie
0.30 – 10.50 m : Material mayormente con presencia de cantos rodados e intrusión de limos

4.3.0 Depósitos eólicos (Q – e)

Estos depósitos consisten de arena suelta transportadas por el viento y depositadas en forma de montículos, lenguas y mantos delgados que se encuentran cubriendo a las rocas en los cerros de La Yarada, Lllostov, Siete Colores y Punta Colorada.

Los depósitos eólicos se aprecian en las inmediaciones de los cerros Alto Grande, Lomas de Sama, cerro Gordo, Alto de Chipe, cerro del Medio, Lomas Arrojadero, pampa cerro Cascoso y pampa cerro Canícora.

4.4.0 Depósitos marinos (Q – m)

El material de esta terraza consiste de conglomerados gruesos, lentes de arena fina de color gris violáceo y arena gruesa de color gris con abundante restos de conchas y venillas de yeso, su grosor varía de 5 a 30 m.

Este depósito yace sobre una superficie de abrasión marina labrada en diorita y superiormente queda cubierto con materiales aluviales e eólicos, cuyos restos de conchas encontrados pertenecen a especies que actualmente viven en el mar.

4.5.0 Depósitos fluviales (Q – f)

Con esta denominación se considera a los depósitos actuales de los fondos de los valles principales. El material consiste de gravas con lentes de arenas y capas de arcillas que son aprovechados como terrenos de cultivo.
PROSPECCIÓN GEOFÍSICA

AUTORIDAD NACIONAL DEL AGUA

5.1.0 Introducción
5.2.0 Objetivos
5.3.0 Metodología empleada y generalidades
5.4.0 Trabajo de campo
5.5.0 Equipos utilizados
5.6.0 Trabajo de gabinete
5.7.0 Resultados
5.0.0 PROSPECCIÓN GEOFÍSICA

5.1.0 Introducción

Actividad fundamental que se realiza en todo estudio hidrogeológico, ejecutándose un total de 765 sondeos entre eléctricos verticales – SEVs y por transitorios electromagnéticos - TDEM, cubriendo la totalidad del valle en estudio. El método empleado es el geoeléctrico a través de los sondeos, cuyo resultado (curva de campo) interpretación y análisis permitirá conocer a partir de la superficie del terreno, la distribución de las distintas capas geoeléctricas del subsuelo en dirección vertical.

5.2.0 Objetivos

Son los siguientes:

- Distinguir las capas del subsuelo, según sus resistividades eléctricas, y cuyos valores permitirá inferir la granulometría predominante y la permeabilidad de cada capa.
- Determinar los espesores de las capas antes mencionadas.
- Determinar la profundidad del techo del basamento impermeable.
- Evaluar en primera aproximación la calidad del agua en relación a su grado de mineralización o salinidad.

5.3.0 Fundamento del método

Las rocas presentan resistividades eléctricas que varían en un amplio rango, dependiendo de diversos factores, como la litología, el grado de conservación, humedad y principalmente el grado de mineralización del agua contenida en los poros y fracturas. Las rocas de una misma génesis presentan valores de resistividad que varían dentro de ciertos rangos típicos, o que permite caracterizarlas.

En depósitos no consolidados, la resistividad aumenta al incrementarse la granulometría predominante. En todos los casos, las rocas que contienen agua mineralizada disminuyen su resistividad.

Las resistividades de las capas pueden ser relacionadas con la naturaleza de las mismas, particularmente, en lo que corresponde al contenido de agua en sus poros o fracturas, al contenido salino del agua y al tamaño de los granos de los depósitos, en caso que se trate de sedimentos no consolidados. El cuadro adjunto muestra las resistividades de algunos medios.
Estudio Hidrogeológico del Valle Sana

RESISTIVIDAD DE AGUAS Y ROCAS

<table>
<thead>
<tr>
<th>Tipo de Agua y Roca</th>
<th>Resistividad Ohm·m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua de mar</td>
<td>0.20</td>
</tr>
<tr>
<td>Agua de acuíferos aluviales</td>
<td>10 - 30</td>
</tr>
<tr>
<td>Agua de fuentes</td>
<td>50 - 100</td>
</tr>
<tr>
<td>Arenas y gravas secas</td>
<td>1,000 - 10,000</td>
</tr>
<tr>
<td>Arenas y gravas con agua dulce</td>
<td>50 - 500</td>
</tr>
<tr>
<td>Arenas y gravas con agua salada</td>
<td>0.5 - 5</td>
</tr>
<tr>
<td>Arcillas</td>
<td>2 - 20</td>
</tr>
<tr>
<td>Margas</td>
<td>20 - 100</td>
</tr>
<tr>
<td>Calizas</td>
<td>300 - 10,000</td>
</tr>
<tr>
<td>Areniscas arcillosas</td>
<td>50 - 300</td>
</tr>
<tr>
<td>Areniscas cuaróiticas</td>
<td>300 - 10,000</td>
</tr>
<tr>
<td>Cineritas, tobas volcánicas</td>
<td>50 - 300</td>
</tr>
<tr>
<td>Lavas</td>
<td>300 - 10,000</td>
</tr>
<tr>
<td>Esquistos grafílicos</td>
<td>0.5 - 5</td>
</tr>
<tr>
<td>Esquistos arcillosos o alterados</td>
<td>100 - 300</td>
</tr>
<tr>
<td>Esquistos sanos</td>
<td>300 - 3,000</td>
</tr>
<tr>
<td>Gneis, granito alterados</td>
<td>100 - 1,000</td>
</tr>
<tr>
<td>Gneis, granitos sanos</td>
<td>1,000 - 10,000</td>
</tr>
</tbody>
</table>

*) PARASNIS SD. Principios de Geofísica Aplicada

A continuación se describe brevemente cada método.

5.3.1 Particularidades del sondeo eléctrico vertical - SEV

En el SEV se introduce corriente continua al terreno mediante un par de electrodos, llamados de corriente A y B, y se mide la diferencia de potencial producido por el campo eléctrico así formado, entre otro par de electrodos, llamados electrodos de recepción o de potencial M y N. Se calcula la resistividad aparente en cada medición según:

\[\rho = K \Delta V / I \]

Donde:

\[\rho \] = Resistividad del medio, Ohm·m.
\[\Delta V \] = Diferencia de potencial, mV, medida en los electrodos M y N.
\[I \] = Intensidad de corriente, mA, medida en los electrodos A y B.
\[K \] = Constante geométrica que depende de la distribución de los electrodos.

Existen diferentes dispositivos de electrodos, entre ellos el más usado es el de Schlumberger en donde los electrodos de medición o corriente M y N permanecen fijos y solamente se aumenta la distancia entre ellos cuando la señal medida es muy baja. En este dispositivo se cumple que la distancia entre A y B sea mayor o igual que tres veces la distancia entre los electrodos M y N.
Esta operación se hace para una serie de separaciones de los electrodo de corriente. Se dibuja en coordenadas bilogarítmicas las semi-distancias entre electrodo de corriente versus las resistividades a parentes, o bieniándose normalmente una curva, por lo que se la llama Curva de Resistividades Aparentes -CRA. Solamente en el caso de que se trate de un medio homogéneo e isotrópico la CRA, realmente sería una recta paralela al eje de las abscisas (distancias AB/2).

La CRA es la expresión de la estructura del suelo y su interpretación consiste en determinar las resistividades verdaderas de las capas y sus correspondientes espesores, pudiéndose hacer mediante el uso de curvas teóricas o usando programas de cómputo especiales.

El uso del SEV es muy restringido y en ciertos casos es imposible usarlos cuando en la sección se presentan capas de resistividad muy elevada. A estas capas se les denomina Capas Pantalla.

Por otro lado, no hay una interpretación única de una CRA, presentándose ciertas alternativas igualmente probable de ser las correctas. Además, se presentan otras limitaciones del método, como por ejemplo, que en la naturaleza no se presentan las condiciones ideales para las cuales se ha ideado el método, tales como: capas homogéneas e isotrópicas, con separaciones planas y paralelas, etc. Ello hace que los resultados obtenidos presenten un margen de error que podría llegar normalmente a ± 10 %.

5.3.2 Particularidades del sondeo por transitorios electromagnéticos - TDEM

Es un método electromagnético en el dominio de tiempos, a menudo llamado sondeo por transitorios electromagnéticos, en que la tierra se energiza por un campo magnético artificial y su respuesta es medida como una función de tiempo para determinar la resistividad de la tierra bajo el punto de la observación como una función de profundidad.

En este tipo de Sondeos, a diferencia de lo que se hace en los SEV tradicionales, no se introduce corriente eléctrica en la tierra. Se hace pasar corriente eléctrica por una espira (o bobina) circular o cuadrada, cuyas dimensiones son escogidas de acuerdo a la profundidad que se necesita investigar. Este paso de corriente produce un campo magnético que penetra al suelo sin ningún impedimento por la presencia de capas pantalla o de muy alta resistividad. La corriente es interrumpida después de un breve lapso y en ausencia del campo primario se mide en otra espira que actúa como receptora la señal del campo secundario formado por las corrientes de torbellino inducidas.
A medida que aumenta la duración de la transmisión de corriente, el campo magnético producido por ésta penetra a mayor profundidad y en consecuencia, su respuesta en la espira receptora es expresión del subsuelo corresponde a profundidades mayores. El proceso de medición es controlado por una computadora.

El decaimiento del campo secundario medido en la superficie puede analizarse para determinar la resistividad de las capas del subsuelo según la profundidad. La ventaja del método TDEM es su aplicabilidad en cualquier condición de terreno, incluyendo regiones desérticas, dunas de arena y también en zonas cubiertas por rocas volcánicas extrusivas, debido a que la existencia de capas pantallas no influye en la efectividad del método.

5.4.0 Trabajo de campo

En todo el valle se han ejecutado 765 sondeos, de los cuales 427 son sondeos eléctricos verticales – SEV y 338 transitorios electromagnéticos TDEM.

En los SEVs, se hicieron tendidos de línea de emisión de corriente AB hasta de 1000 m.

En los TDEM, se efectuaron con espiras cuadradas de 100 m por lado, que ha permitido investigar profundidades hasta de 400 m.

La ubicación de los puntos ejecutados tanto de los SEVs como de los TDEM se muestran en la Lámina Nº 5.1

5.5.0 Equipos utilizados

Los equipos utilizados en el presente estudio fueron:

Para la ejecución de los SEVs se utilizó un Georesistivímetro digital, que presenta las siguientes características:

- Un Transmisor-Convertidor DC – 25 – 600 v / 200 w con corriente continua. La potencia de salida es de 200 watts y su voltaje de salida es de 25 a 600 voltios DC.

- Dos multímetros marca Fluke 189, que funcionan como receptores digitales, tienen una resolución máxima de 10 microvoltios. Asimismo, ambos anulan el potencial natural y la polarización de los electrodos.
Accesorios:

- 2 carretes de 500 m de cable de sondeo AB.
- 2 carretes de 60 m de cable de sondeo MN.
- 10 electrodos de acero inoxidable: 6 de emisión y 4 de corriente.
- 1 GPS.
- 1 altímetro digital.
- radios portátiles.
- brújula brunton.

Para el procesamiento e interpretación de los SEV se ha utilizado el programa WINSEV (suizo), desarrollado por GEOSOF.

Para la ejecución de los STDEM se utilizó un sistema TSIKL-5 (CICLO-5) fabricado por la firma ELTA de Novosibirsk - Rusia, siendo sus características las siguientes:

- Receptor digital controlado por computadora externa, con sensibilidad máxima de 1 microvoltio y duración del pulso eléctrico variable desde 5 microsegundos hasta 20 segundos.
- Generador con potencia hasta de 1 kw.
- Espira transmisora con voltaje máximo e intensidad de 100 voltios y 20 amperes.

Accesorios:

- 04 bobinas con cable (TDEM) de 100 m cada una.

En la toma de datos de campo se utilizó el software PROBA "C", instalado en una computadora portátil.

5.6.0 Trabajo de gabinete

La información de campo obtenida a través de los SEVs y TDEMs están siendo procesados de acuerdo a las técnicas establecidas para la exploración eléctrica en aguas subterráneas.

En la interpretación de los SEVs y TDEMs se está utilizando los siguientes programas. Ver cuadro adjunto.
La interpretación de los SEVs y TDEMs, permitirá elaborar lo siguiente:

- Secciones geoeléctricas
- Planos geofísicos:
 - Resistividades del horizonte superior saturado
 - Espesores del horizonte superior saturado
 - Espesores totales de los depósitos cuaternarios
 - Condiciones geoeléctricas del acuífero Sama
INVENTARIO DE FUENTES DE AGUA SUBTERRÁNEA

6.1.0 Inventario de pozos
6.2.0 Clave para identificar los pozos
6.3.0 Tipos de pozos
6.4.0 Estado de los pozos
6.5.0 Uso de los pozos
6.6.0 Rendimiento de los pozos
6.7.0 Explotación del acuífero mediante pozos
6.8.0 Características técnicas de los pozos
6.9.0 Explotación actual de las aguas subterráneas
6.0.0 INVENTARIO DE FUENTES DE AGUA SUBTERRÁNEA

El objetivo del inventario fue determinar la cantidad actual de pozos, cuyo resultado permitirá conocer la situación física y técnica de éstos, así como cuantificar la masa de agua explotada del acuífero.

En el área de estudio se ha registrado sólo un tipo de fuente de agua subterránea (artificial), la cual está representado por los pozos.

6.1.0 Inventario de pozos

El inventario de pozos se realizó durante los meses de julio a setiembre del 2005, para ello fue necesario contar con personal técnico, el mismo que estuvo conformado por una (01) brigada. Ver fotografías N°s 21 y 22.

El trabajo consistió en obtener información técnica de los pozos, con el propósito de contar con la base de datos necesario para cumplir con el objetivo del estudio. La fase del inventario se inició en los sectores Poquera, Sama Grande y Proter (distrito de Sama - Inclán), se continuó en los sectores Pampa La Julia, Munipata, Cuilona, Quebrada de Las Brujas, El Golpe y Boca del Río (distrito Sama - Las Yaras).

En el valle se han inventariado un total de 44 pozos, los que inicialmente se ubicaron en planos catastrales a escala de 1/10,000, y posteriormente en planos a escala 1/25,000. La ubicación de las fuentes de agua pueden observarse en la Lámina N° 6.1 y, las características técnicas y las medidas realizadas en los pozos en el Anexo II: Inventario de Fuentes de Agua Subterránea. En el cuadro N° 6.1 se muestra el número de pozos registrado por distrito político.

CUADRO N° 6.1
DISTRIBUCIÓN DE LOS POZOS POR DISTRITO POLÍTICO
VALLE SAMA – 2005

<table>
<thead>
<tr>
<th>Distrito</th>
<th>Nº de Pozos</th>
<th>%</th>
<th>% de Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sama – Inclán</td>
<td>13 / /</td>
<td>25.00</td>
<td>22.44</td>
</tr>
<tr>
<td>Sama–Las Yaras</td>
<td>30 / 9 /</td>
<td>75.00</td>
<td>77.56</td>
</tr>
<tr>
<td>Total</td>
<td>43 / 49</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>

6.2.0 Clave para identificar los pozos

Para la identificación de los pozos inventariados se emplea la clave respectiva, que está conformada por cuatro (04) números, los tres primeros (1°, 2° y 3°) constituyen los códigos del departamento, provincia y distrito respectivamente, mientras que el 4°, se asigna al pozo de acuerdo a un orden correlativo.
La base de los códigos de los pozos en el área de estudio se muestra en el cuadro Nº 6.2

<table>
<thead>
<tr>
<th>Distrito</th>
<th>Código Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sama - Inclán</td>
<td>23/01/09</td>
</tr>
<tr>
<td>Sama - Las Yaras</td>
<td>23/01/05</td>
</tr>
</tbody>
</table>

ASÍ POR EJEMPLO, LA CLAVE DEL POZO 05 QUE SE ENCUENTRA UBICADO EN EL DISTRITO DE SAMA - INCLÁN, EL IRHS Nº 23/01/09-05, DONDE LAS SIGLAS IRHS SIGNIFICA “INVENTARIO DE RECURSOS HÍDRICOS SUBTERRÁNEOS”. VER FOTOGRAFÍA N° 23.

6.3.0 **Tipo de pozos**

El inventario ha registrado 52 pozos; de los cuales 6 son tubulares, 43 a tajo abierto y 3 mixtos. Ver cuadro Nº 6.3

6.3.1 **Pozos tubulares**

En el área de estudio se han registrado 6 pozos tubulares, que representan el 11.54 % del total inventariado, observándose la mayor concentración en el distrito de Sama - Inclán con 4 pozos; mientras que en Sama - Las Yaras sólo existen 2 pozos de este tipo. Ver cuadro Nº 6.3

6.3.2 **Pozos a tajo abierto**

Estos pozos generalmente son los más utilizados principalmente en los sectores de menores recursos económicos.

En el área de estudio se ha inventariado un total de 45 pozos, que representan el 82.68 % del total inventariado.

Sama - Las Yaras con 35 pozos es el distrito con la mayor densidad de pozos; mientras que en Sama - Inclán se presentan sólo 6 pozos de este tipo. Ver cuadro Nº 6.3

6.3.3 **Pozos mixtos**

Estos pozos se encuentran en menor proporción en el valle, habiéndose registrado un total de 3 pozos, que representan sólo el 5.78 % del total inventariado. Ver cuadro Nº 6.3
CUADRO Nº 6.3
DISTRIBUCIÓN DE LOS POZOS SEGÚN SU TIPO
VALLE SAMA – 2005

<table>
<thead>
<tr>
<th>Distrito</th>
<th>Estadística</th>
<th>Tipo de Pozo</th>
<th>Tubular</th>
<th>Mixto</th>
<th>Tajo Abierto</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sama – Inclán</td>
<td>Nº de pozos</td>
<td></td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td></td>
<td>80.00%</td>
<td></td>
<td>10.00%</td>
<td></td>
</tr>
<tr>
<td>Sama - Las Yaras</td>
<td>Nº de pozos</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td></td>
<td>50.00%</td>
<td></td>
<td>50.00%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Total de pozos</td>
<td></td>
<td>6</td>
<td>3</td>
<td>12.24</td>
<td>22.44</td>
</tr>
<tr>
<td></td>
<td>% Total</td>
<td></td>
<td>15.57%</td>
<td>5.78%</td>
<td>84.63%</td>
<td></td>
</tr>
</tbody>
</table>

6.4.0 Estado de los pozos

6.4.1 Pozos utilizados

Son aquellos pozos que durante el inventario estaban siendo explotados (funcionando) ya sea para uso agrícola, doméstico, industrial y/o pecuario.

En el área de estudio se han registrado 4 pozos utilizados, que representan el 7.69 % del total inventariado. El cuadro Nº 6.4 muestra su distribución según su estado.

CUADRO Nº 6.4
DISTRIBUCIÓN DE LOS POZOS SEGÚN SU ESTADO
VALLE SAMA – 2005

<table>
<thead>
<tr>
<th>Distrito</th>
<th>Utilizado</th>
<th>Utilizable</th>
<th>No utilizable</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nº</td>
<td>Nº</td>
<td>Nº</td>
<td>Nº</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Sama – Inclán</td>
<td>0</td>
<td>0</td>
<td>17.31%</td>
<td>28%</td>
</tr>
<tr>
<td></td>
<td>0.00%</td>
<td></td>
<td></td>
<td>25.00</td>
</tr>
<tr>
<td>Sama - Las Yaras</td>
<td>4</td>
<td>24</td>
<td>16.15%</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>7.69%</td>
<td>46.15%</td>
<td></td>
<td>38%</td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
<td>33</td>
<td>15.57%</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>7.69%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

En el cuadro Nº 6.5 se aprecia la distribución de pozos utilizados según su tipo, observándose que en su totalidad están ubicados en el distrito de Sama – Las Yaras, de los cuales 1 es mixto (25 %) y 3 a tajo abierto (75.00 %) del total de pozos utilizados.

CUADRO Nº 6.5
DISTRIBUCIÓN DE POZOS UTILIZADOS SEGÚN SU TIPO
VALLE SAMA – 2005

<table>
<thead>
<tr>
<th>Distrito</th>
<th>Tubular</th>
<th>Mixto</th>
<th>Tajo Abierto</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nº</td>
<td>Nº</td>
<td>Nº</td>
<td>Nº</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Sama – Inclán</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sama – Las Yaras</td>
<td>0</td>
<td>1</td>
<td>25.00</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0.00%</td>
<td>25.00%</td>
<td></td>
<td>100.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>0</td>
<td>1</td>
<td>25.00</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0.00%</td>
<td></td>
<td></td>
<td>100.00</td>
</tr>
</tbody>
</table>
6.4.2 Pozos utilizables

Los pozos utilizables son aquellos que se encuentran sin equipo de bombeo, abandonados por bajo rendimiento para el fin que fueron perforados, sellado en reserva, con equipo malogrado y/o en perforación.

En el valle se han inventariado 33 pozos utilizables, observándose que en el distrito de Sama – Las Yaras se ubican (24 pozos), mientras que en Sama – Inclán se ubican solo 9 pozos en este estado. Ver cuadro N° 6.6.

La mayoría de los pozos que se encuentran en estado utilizable, se debe a los siguientes factores:

- La antigüedad de los pozos (mayoría supera su vida útil).
- Equipos de bombeo malogrados.
- Sin equipo.
- Sellados en reserva.
- Abandonados (salobres).

<table>
<thead>
<tr>
<th>Distrito</th>
<th>Tubular</th>
<th>Mixto</th>
<th>Tajado Abierto</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N°</td>
<td>%</td>
<td>N°</td>
<td>%</td>
</tr>
<tr>
<td>Sama - Inclán</td>
<td>3</td>
<td>9.09</td>
<td>1</td>
<td>3.03</td>
</tr>
<tr>
<td>Sama – Las Yaras</td>
<td>2</td>
<td>6.06</td>
<td>1</td>
<td>3.03</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>15.15</td>
<td>2</td>
<td>6.06</td>
</tr>
</tbody>
</table>

6.4.3 Pozos no utilizables

Son aquellos pozos que durante el inventario se encuentran derrumbados, desviado la tubería, enterrado y seco permanentemente; en el valle, en este estado se encuentran quince (15) pozos, que representan el 28.85 % del total inventariado. Del total de pozos no utilizables, 14 se encuentran ubicados en el distrito de Sama – Las Yaras y 1 en Sama - Inclán. Ver cuadro N° 6.4.

6.5.0 Uso de los pozos

En el área de estudio se ha inventariado 4 pozos utilizados, de los cuales dos (02) son domésticos y dos (02) industriales.

6.5.1 Pozos de uso doméstico

El inventario efectuado en el valle ha registrado solo dos (2) pozos de este uso, ambos ubicados en el distrito de Sama – Las Yaras. Ver cuadro N° 6.7.
CUADRO Nº 6.7
TIPO DE POZOS UTILIZADOS SEGÚN SU USO
VALLE SAMA – 2005

<table>
<thead>
<tr>
<th>Distrito</th>
<th>Tipo de Pozo según su Uso</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Doméstico</td>
<td>Industrial</td>
</tr>
<tr>
<td>Sama - Inclán</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sama – Las Yaras</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

6.5.2 **Pozos de uso agrícola**

En el área de estudio no se han registrado ningún pozo de uso agrícola; aunque sí se ha inventariado dos (02) pozocochas de este uso, ubicadas en el distrito de Sama – Las Yaras. Ver cuadro Nº 6.7.

6.5.3 **Pozos de uso pecuario**

En el valle Sama no se han registrado ningún pozo de este tipo. Ver cuadro Nº 6.7

6.5.4 **Pozos de uso industrial**

El inventario realizado indica que sólo dos (02) pozos son de uso industrial; ambos ubicados en el distrito de Sama – Las Yaras. Ver cuadro Nº 6.7

6.6.0 **Rendimiento de los pozos**

Los rendimientos de los pozos utilizados según su tipo, se pueden apreciar en los cuadros de características técnicas, medidas realizadas y volúmenes de explotación de pozos, que se presentan en el Anexo II: Inventario de Fuentes de Agua Subterránea y en el cuadro Nº 6.8.

Analizando los cuadros antes mencionados se ha determinado que el rendimiento en los pozos ya sea tubulares, mixtos y a tajoabierto es bajo, debido a que actualmente la explotación de agua subterránea en el valle de Sama es casi nulo.

CUADRO Nº 6.8
VARIACIÓN DE LOS RENDIMIENTOS DE LOS POZOS SEGÚN SU TIPO
VALLE SAMA – 2005

<table>
<thead>
<tr>
<th>Distrito</th>
<th>Tubular</th>
<th>Tajo Abierto</th>
<th>Mixto</th>
<th>Pozocochas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Máximo</td>
<td>Mínimo</td>
<td>Máximo</td>
<td>Mínimo</td>
</tr>
<tr>
<td>Sama - Inclán</td>
<td>Ubicación</td>
<td>IRHS</td>
<td>Caudal (1/6)</td>
<td></td>
</tr>
<tr>
<td>Sama – Las Yaras</td>
<td>Ubicación</td>
<td>05/1.1.1.</td>
<td>Las Yaras</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRHS</td>
<td>29</td>
<td>1</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Caudal (1/6)</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
6.7.0 Explotación del acuífero mediante pozos

A continuación describiremos los volúmenes explotados del acuífero, el mismo que permitirá observar su evolución en el tiempo.

6.7.1 Explotación en el 2005

- Según su uso

En el presente estudio, el volumen total explotado mediante pozos fue de 28,565.40 m³, mediante cochineras de 27,440.00 m³, que llenan un total de 52,005.40 m³.

En relación al volumen explotado según su uso, mayormente es utilizado para uso industrial 27,820.80 m³ y para uso doméstico 744.60 m³. Ver cuadro N° 6.11

CUADRO N° 6.9

VOLUMENES DE EXPLOTACIÓN DE LAS AGUAS SUBTERRÁNEAS SEGÚN SU USO. VALLE SAMÁ - 2005

<table>
<thead>
<tr>
<th>Distrito</th>
<th>Volumen (m³)</th>
<th>Doméstico</th>
<th>Agrícola</th>
<th>Pecuario</th>
<th>Industrial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sama - Inclán</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Sama - Las Yaras</td>
<td>27,820.80</td>
<td>27,820.80</td>
<td>0.00</td>
<td>0.00</td>
<td>27,820.80</td>
</tr>
<tr>
<td>Total</td>
<td>28,565.40</td>
<td>27,440.00</td>
<td>0.00</td>
<td>0.00</td>
<td>28,565.40</td>
</tr>
</tbody>
</table>

- Según el tipo de pozo

El cuadro N° 6.10 muestra la explotación de las aguas subterráneas por tipo de pozo en el valle estudiado, habiéndose explotado mediante pozos a tajo abierto 18,888.60 m³ y mediante los mixtos 9,976.80 m³, volúmenes que se explotan solo en el distrito de Sama - Las Yaras. Por otro lado, se menciona que existen dos (02) pozo-cochas que se explota 23,440.00 m³ utilizado principalmente en la agricultura.

CUADRO N° 6.10

VOLUMENES DE EXPLOTACIÓN DE LAS AGUAS SUBTERRÁNEAS POR TIPO DE POZO. VALLE SAMÁ - 2005

<table>
<thead>
<tr>
<th>Distrito</th>
<th>Volumen Explorado (m³)</th>
<th>Tajo Abierto</th>
<th>Mixto</th>
<th>Tubular</th>
<th>Total (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sama - Inclán</td>
<td>18,888.60</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>18,888.60</td>
</tr>
<tr>
<td>Sama - Las Yaras</td>
<td>9,976.80</td>
<td>9,976.80</td>
<td>0.00</td>
<td>0.00</td>
<td>9,976.80</td>
</tr>
<tr>
<td>Sub - Total</td>
<td>28,565.40</td>
<td>27,440.00</td>
<td>0.00</td>
<td>0.00</td>
<td>28,565.40</td>
</tr>
</tbody>
</table>

Resumiendo lo anterior se indica que la explotación de agua subterránea en el valle estudiado es muy baja, debido posiblemente a su mala calidad.
6.8.0 Características técnicas de los pozos

6.8.1 Profundidad de los pozos

La profundidad de los pozos en todo el valle es variable, dependiendo básicamente del tipo, uso y ubicación de cada uno de ellos.

En el área de estudio, las profundidades máximas y mínimas de los pozos es variable:

Así, en los pozos tubulares, se ha encontrado profundidades que fluctúan de 33.03 a 55.09 m, en los tajo abiertos de 10.12 a 17.12 m, llegando incluso a 40.00 m en la Pampa de Sama; mientras que en los mixtos las profundidades llegan a 60.70 m. Ver cuadro N° 6.14

La profundidad mínima de los pozos tubulares es de 18.74 m, en pozos a tajo abierto de 1.50 m y en los mixtos de 24.80 m. Por otra lado, de profundidad media 1.70m y 2.0m de profundidad.

CUADRO Nº 6.11
PROFUNDIDADES ACUJALES MÁXIMAS Y MÍNIMAS DE LOS POZOS SEGÚN SU TIPO VALLE SAMA - 2005

<table>
<thead>
<tr>
<th>Diario</th>
<th>Tubería</th>
<th>Mínimo</th>
<th>Mínimo</th>
<th>Mínimo</th>
<th>Mínimo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burlón</td>
<td>3</td>
<td>11.72</td>
<td>11.72</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Mixto</td>
<td>1.50</td>
<td>24.80</td>
<td>24.80</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>Cruz</td>
<td>2.00</td>
<td>18.74</td>
<td>18.74</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>Mixto</td>
<td>2.00</td>
<td>24.80</td>
<td>24.80</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>Sama - Inclán</td>
<td>55.09</td>
<td>24.72</td>
<td>24.72</td>
<td>50.00</td>
<td>50.00</td>
</tr>
<tr>
<td>Profundidad (m)</td>
<td>33.03</td>
<td>18.74</td>
<td>18.74</td>
<td>33.03</td>
<td>33.03</td>
</tr>
<tr>
<td>Sama - Las Yaras</td>
<td>33.03</td>
<td>18.74</td>
<td>18.74</td>
<td>33.03</td>
<td>33.03</td>
</tr>
<tr>
<td>Profundidad (m)</td>
<td>55.09</td>
<td>24.72</td>
<td>24.72</td>
<td>50.00</td>
<td>50.00</td>
</tr>
</tbody>
</table>

6.8.2 Diámetro de los pozos

El diámetro de los pozos es variable, así en los tubulares fluctúan entre 0.35 y 0.50 m, en los tajos abiertos de 0.98 a 1.30 m y en los mixtos de 1.30/0.50 a 1.50/0.50 m. (Ver fotografía N° 36.)

6.8.3 Equipo de bombeo

De los 7 pozos equipados y registrados en el valle de Sama, cuatro se encuentran ubicados en el distrito de Sama - Las Yaras y tres en Sama - Inclán.

En el cuadro N° 6.12 se muestra detalladamente el número de pozos equipados según el tipo de pozo y por distrito político. Las características de los equipos de bombeo se muestran en el Anexo II: Inventario de Fuentes de Agua Subterránea.
6.8.3.1 Motores

En el área de estudio existen tres (03) tipos de motores: diesel, gasolíneo y eléctrico, con potencias de 5 y 66 Hp. Ver Anexo II: Inventario de Fuentes de Agua Subterránea.

Se ha inventariado en todo el valle 7 motores, de los cuales 3 son diesel, 3 eléctricos y un (1) gasolíneo. La marca de los motores son la Hidrostal y Delcrosa. Ver cuadro N° 6.15.

CUADRO N° 6.12
DISTRIBUCIÓN DEL EQUIPAMIENTO DE LOS POZOS
VALLE SAMA - 2005

<table>
<thead>
<tr>
<th>Distrito</th>
<th>Tipo de Pozo</th>
<th>Equipamiento</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Con Equipo</td>
<td>Sin Equipo</td>
</tr>
<tr>
<td>Sama - Inclán</td>
<td>Tubular</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mixto</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tajo Abierto</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Sub – Total</td>
<td></td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Sama - Los Yaras</td>
<td>Tubular</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mixto</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Tajo Abierto</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Sub – Total</td>
<td></td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>8</td>
<td>13</td>
</tr>
</tbody>
</table>

6.8.3.2 Bombas

De las 40 bombas que se han inventariado en el valle, 6 pozos se encuentran equipados con bombas tipo turbina vertical y 34 son sumergibles. La marca de la bomba son Hidrostal y Deep Well Pump, y Honda. Ver cuadro N° 6.15.

El estado de operación, conservación y mantenimiento de los equipos de bombeo ubicados en los pozos se puede calificar como regulares; debido que que no hay casi explotación de agua subterránea en el valle estudiado, encontrándose los equipos de bombeo en reserva. Las características de las bombas se muestran en el Anexo II: Inventario de Fuentes de Agua Subterránea.
CUADRO Nº 6.13
MOTORES Y BOMBAS QUE PREDOMINAN
EN EL VALLE SAMA - 2005

<table>
<thead>
<tr>
<th>Distrito</th>
<th>Marca de Motor</th>
<th>Marca de Bomba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tajo Abierto</td>
<td>Tubular</td>
</tr>
<tr>
<td>Sama - Inclán</td>
<td>Honda</td>
<td>Chino</td>
</tr>
<tr>
<td>Sama - Las Yaras</td>
<td>Hidrostal</td>
<td>Chino</td>
</tr>
</tbody>
</table>

6.9.0 Explotación actual de las aguas subterráneas

Los aforos realizados en los pozos utilizados (operativos) en la fase del inventario de las fuentes de agua subterránea, ha permitido calcular el volumen total de agua explotado del acuífero Sama.

Actualmente se explota del acuífero una masa de agua equivalente a

\[28,565.40 \text{ m}^3\]
\[52,005.40 \text{ m}^3\]

6.9.1 Zona I: Sama - Inclán

Zona confinada por el distrito de Sama - Inclán, ubicado en la parte superior del valle Sama. En esta zona no hay explotación de agua subterránea y los pozos se encuentran en estado utilizable y no utilizables.

6.9.2 Zona II: Sama – Las Yaras

Zona ubicada que comprende la parte media y baja del valle, actualmente se explota una masa de agua de 28,565,40 \text{ m}^3, que es el total de agua subterránea explotado en el valle estudiado, siendo el sector Las Yaras con 27,820,80 \text{ m}^3 el más explotado.

En el cuadro Nº 6.14, se muestra por zonas las masas de agua explotadas del acuífero Sama.

CUADRO Nº 6.14
VARIACIÓN DE LOS VOLUMÉNESES DE EXPLOTACIÓN (m3/año)
POR ZONAS - VALLE SAMA – 2005

<table>
<thead>
<tr>
<th>Zona</th>
<th>Distrito</th>
<th>Volumen de Explotación (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Sama - Inclán</td>
<td>0.00</td>
</tr>
<tr>
<td>II</td>
<td>Sama – Las Yaras</td>
<td>52,005.40 28,565.40</td>
</tr>
</tbody>
</table>

Resumiendo, podemos indicar que la zona II, distrito de Sama – Las Yaras es donde se explota todo el agua subterránea del valle estudiado.
RESERVORIO ACUÍFERO

7.1.0 Geometría del reservorio
7.2.0 El medio poroso
7.3.0 La napa freática
7.0.0 RESERVOIR ACUÍFERO

Teniendo como referencia los estudios de la geología-geomorfología del lugar y el análisis de los perfiles litológicos de pozos, a lo que habría que agregar las observaciones realizadas en el valle se ha determinado que el acuífero del área investigada, está constituida principalmente por depósitos aluviales que llenan la zona cultivable, mientras que en las pampas aledañas existen en su superficie depósitos de cenizas volcánicas.

7.1.0 Geometría del reservorio

7.1.1 Forma y límites

El valle Sama (zona cultivable) tiene forma alargada, observándose que tanto en su parte inicial y final el ancho es corto, a esepción que las pampas aledañas son amplias en ambas margenes del río Sama.

El acuífero está conformado principalmente por materiales de origen aluvial y élico, los mismos que constituyen el relleno del fondo del valle y la cobertura de las pampas de la costa; todos los materiales pertenecen al cuaternario reciente. En algunos sectores, el valle presenta pequeños afloramientos de diversas formaciones sedimentarias.

El acuífero en la parte alta está delimitado en su margen derecha por afloramientos rocosos representados por los cerros La Aurora, Trujillo Muerto, Tranquilla, Conicora y Punta Colorada; mientras que en la margen izquierda por los cerros Cintura, Puquio, cerillos Blancos y Magollo.

A partir de los sectores El Alto, Sama Grande, Poquera, Los Pinos, Buena Vista, Miraflores, Las Yaras, Para, Cuilona; El Golpe entre otros conforman la zona cultivable; mientras que en ambas márgenes el acuífero del Río Sama está conformado por extensas pampas presentando dimensiones variables. En su flanco derecho se encuentra delimitado por los cerros La Aurora, Trujillo Muerto, Tranquilla, Conicora y Punta Colorada, lo mismo sucede en el flanco izquierdo donde está delimitado por los cerros Loma Larga, Cintura, Puquio, cerillos Blancos y Magollo. Entre los sectores Boca del Río y Vila Vila, existen depósitos aluvionales y marinos, éstos últimos indican la cercanía al litoral; asimismo en menor proporción se encuentran montículos, lenguas y mantos delgados que se encuentran cubriendo a las rocas en los cerros de La Yarada, Llostov, Siete Colores y Punta Colorada, formando una franja delgada cerca al litoral.
7.1.2 Dimensiones

El acuífero presenta dimensiones variadas; así en la parte cultivable, en los sectores Sama Grande y Poquera, el ancho del acuífero fluctúa entre 1,300 y 1,500 m; mientras que en los sectores Buena Vista, Los Pinos y Para, oscila entre 2,000 y 2,250 m. Finalmente en los sectores Cuilona, Haras Capuli y El Golpe, las dimensiones se reducen de 1,200 a 500 m. En las pampas aledañas, el acuífero presenta dimensiones mayores a los descritos anteriormente, así en la margen derecha del río en los sectores Procter, Lomas de Sama y Pampa El Arrojadero, Pampa Cerro del Medio y Las Yaras Pueblo las dimensiones varían de 20,000 a 22,000 m; mientras que en los sectores Pampa Pie de Candela y Quebrada Honda fluctúa entre 11,500 y 12,000 m. En la margen izquierda, en los sectores Pampa del Pedregal y Asociación de Agricultores las dimensiones del acuífero varían de 9,000 a 10,000 m; mientras que en los sectores Quebrada Las Brujas, Quebrada Los Molles, Asociación San Martín de Porres y Asociación de Agricultores El Camaleón el acuífero se ensancha fluctuando entre 25,000 y 30,000 m.

7.2.0 El medio poroso

7.2.1 Litología

Con los resultados obtenidos del levantamiento geológico – geomorfológico del valle y así como también del análisis de los perfiles litológicos de pozos; se ha determinado la litología del acuífero y los materiales que lo conforman.

El acuífero está constituido principalmente por sedimentos aluviales y en forma secundaria por fluviales y eólicos todos del cuaternario reciente. Litológicamente está conformado por cantos, cenizas, guijarros, gravas, arenas, arcillas y limos entremezclados en diferentes proporciones formando horizontes de espesores variables, que se presentan en forma alternada en sentido vertical.

Por otro lado, debe indicarse que los sedimentos aluviales tienen amplia distribución en la parte cultivable del valle, tal como se observa en las localidades de Sama Grande, Poquera, Los Pinos entre otros. La planicie costanera o de acumulación es de pendiente suave y se ve interrumpida por algunos afloramientos de diversas formaciones que antes formaban una sola mantaña.

7.3.0 La napa freática

La napa freática contenida en el acuífero (lugares cultivables) es libre y superficial, siendo su fuente de alimentación las aguas que se infiltran en la parte alta de la cuenca (zona húmeda), así como también las que se infiltran a través del lecho del río, de los canales de riego no revestidos, así como de las áreas de cultivo bajo riego.
7.3.1 Morfología del techo de la napa freática

Con la finalidad de estudiar la morfología de la superficie piezométrica, determinar la dinámica de la napa y, definir las variaciones de las reservas explotables del acuífero, se conformó la Red Piezométrica en el valle (red de observación pre establecida) para lo cual se seleccionó pozos principalmente inactivos (utilizables) que serán utilizados como piezómetros, y que se encuentran distribuidos uniformemente en todo el área de estudio. La red está constituida por 25 pozos, cuya ubicación se muestra en el plano de la Lámina N° 7.1. Por otro lado, los pozos que la conforman, se ubican en el Anexo III: Reservorio Acuífero.

En la Lámina N° 7.1 se aprecia las líneas (hidroisohipsas) elaboradas para diferentes cotas de aguas, observándose una gran semejanza morfológica de la napa freática, lo cual demuestra que el régimen del flujo subterráneo es permanente.

El sentido y orientación del flujo subterráneo hidráulico es mayormente constante, mientras que su gradientes varía de acuerdo a las zonas en que fue dividido el acuífero, tal como se describe a continuación:

7.3.1.1 Zona I: Sama - Inclán

Zona ubicada en la cabecera del valle. Así, entre los sectores Sama Grande e Inclán, el sentido de flujo tiene una orientación de norte a sur, presentando una gradiente hidráulica de 2.96 %, cuya variación de las cotas de nivel de agua son de 490.00 a 450.00 m.s.n.m.

Entre los sectores Poquera y Tomasiri Bajo, la napa tiene una orientación de noreste a suroeste, presentando una gradiente hidráulica de 1.29 %, mientras que las cotas de nivel fluctúan entre 430 y 415.00 m.s.n.m.

7.3.1.2 Zona II: Sama - Las Yaras

Entre los sectores Los Pinos y Las Yaras (lugar cultivable), el sentido de flujo es de noreste a suroeste, su pendiente hidráulica es de 1.31 % y las cotas de nivel fluctúan entre 410 y 395 m.s.n.m.

Por otro lado, entre los entre los sectores Exsa (Ex Química Sol), Para y La Banda, el sentido de flujo es de norte a sur, su pendiente de 1.04 %, con cotas de nivel de agua que varían de 370 a 350 m.s.n.m; mientras que en los sectores Muniapata, Cuilona y El Golpe, el sentido de flujo es de noreste a suroeste, la pendiente es de 1.38 % y las cotas de los niveles de agua fluctúan de 340 a 305 m.s.n.m.
Asimismo, entre los sectores Quebrada Las Brujas y Cocal, el sentido del flujo es de noreste a suroeste, su pendiente hidráulica es de 0.82 % y las cotas de niveles de agua fluctúan de 140 a 115 m.s.n.m; mientras que entre los sectores Pampa Molina – Sequina y Pampa Molina – Vitúña, el flujo se orienta de noreste a suroeste, su pendiente es de 2.22 % y las cotas del agua varían entre 40 y 25 m.s.n.m.

En el cuadro Nº 7.1 se muestra el resumen de las características de la morfología de la napa en el área de estudio.

CUADRO Nº 7.1
CARACTERÍSTICAS DE LA MORFOLOGÍA DE LA NAPA
FREÁTICA – VALLE SAMA - 2004

<table>
<thead>
<tr>
<th>Zona</th>
<th>Sector</th>
<th>Año – 2005</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sentido</td>
</tr>
<tr>
<td>I</td>
<td>Sama Grande – Inclán</td>
<td>N – S</td>
</tr>
<tr>
<td></td>
<td>Poquera – Tomasiri Bajo</td>
<td>NE – SO</td>
</tr>
<tr>
<td></td>
<td>Los Pinos – Las Yaras</td>
<td>NE – SO</td>
</tr>
<tr>
<td></td>
<td>Exsa, Para y La Banda</td>
<td>N – S</td>
</tr>
<tr>
<td></td>
<td>Munipata, Cullona y El Golpe</td>
<td>NE – SO</td>
</tr>
<tr>
<td></td>
<td>Quebrada Las Brujas – Cocal</td>
<td>NE – SO</td>
</tr>
<tr>
<td></td>
<td>Pampa Molina – Sequina y Pampa Molina – Vitúña</td>
<td>NE – SO</td>
</tr>
</tbody>
</table>

7.3.2 Profundidad del techo de la napa

El nivel estático de la napa se ubica a profundidades que varían de 0.83 – 1.54 m (sectores Haras de Capuli y Tomasiri Bajo) a 12.86 – 14.83 m (sectores Exsa, Las Yaras Pueblo. Puntualmente existen niveles de agua profundos (37.60 y 39.07 m) valores ubicados en los sectores Pampa El Pedregal y Asociación de Daminificados Nueva Sama respectivamente.

En base a las medidas de los niveles estáticos del agua, se ha elaborado el plano de Isoprofundidad de la napa, que permite dar una visión general de los niveles del agua subterránea en todo el valle.

Isoprofundidad de la napa 2005

La Lámina Nº 7.2 muestra el plano de Isoprofundidad de la napa para el año 2005, el mismo que se describe a continuación:
7.3.2.1 Zona I: Sama - Inclán

En esta zona, la napa de agua se ubica mayormente entre 4.23 y 12.86 m de profundidad, aunque en proporción se encuentran valores que oscilan entre 1.54 y 2.23 m específicamente en el sector Tomasiri Bajo, llegando incluso a 33.63 m de profundidad.

Entre los sectores Sama Grande e Inclán, la napa freática se encuentra entre 9.56 y 12.86 m de profundidad; mientras que en el sector Poquera, se ubica entre 4.23 y 6.26 m de profundidad. Por otro lado en el sector Tomasiri bajo el nivel de los frentes de flujo se encuentra entre 1.54 y 2.23 m de profundidad.

Asimismo, puntualmente en la margen izquierda en la Pampa El Pedregal sector Asociación de Agricultores "Fundo Belén" y Asociación Agroindustrial "Fundo Cuilona" se ubica un valor de 37.60 m de profundidad pozo IRHS 41 distrito de Sama - Inclán.

7.3.2.2 Zona II: Sama - Las Yaras

En esta zona, la napa de agua se ubica mayormente entre 0.83 y 8.26 m de profundidad, observándose el nivel más superficial en el sector Cuilona pozo IRHS 18 distrito de Sama - Las Yaras.

Así, entre los sectores Los Pinos y Las Yaras (lugar cultivable), la napa se ubica entre los 5.69 y 7.34 m de profundidad; mientras que entre los sectores La Banda y Cuilona entre 6.08 y 8.17 m respectivamente.

Entre los sectores Haras de Capuli y El Golpe, se encuentran los niveles de agua mas superficiales y se encuentran oscilando entre 0.83 y 2.26 m. Por otro lado, entre los sectores Pampa Molina - Sequina y Pampa Molina - Vitiña, la napa freática fluctúa entre 5.82 y 6.48 m; mientras que en el sector Cocal, llega a 5.81 m de profundidad.

Asimismo, en la margen derecha (pampa Sama) entre los sectores Las Yaras Pueblo, Exsa (Ex Química Sol) y Munipata, los niveles del agua subterránea se ubican entre 3.86 y 14.83 m de profundidad; mientras que en la margen izquierda (pampa Sama) sectores Quebrada Las Brujas y Asociación de Damificados "Nueva Sama"; varían entre 20.94 y 39.07 m de profundidad respectivamente.
En el cuadro N° 7.2, se muestra el resumen de la variación de la profundidad de la napa freática en el área de estudio.

CUADRO N° 7.2
PROFUNDIDAD DE LA NAPA FREÁTICA
VALLE SAMÁ – 2005

<table>
<thead>
<tr>
<th>Zona</th>
<th>Sector</th>
<th>Nivel Freático (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Tomasiri Bajo</td>
<td>1.54-2.23</td>
</tr>
<tr>
<td>I</td>
<td>Sama Grande – Inclán</td>
<td>9.56-12.86</td>
</tr>
<tr>
<td>I</td>
<td>Poquera</td>
<td>'4.23-6.26</td>
</tr>
<tr>
<td>I</td>
<td>Pampa El Pedregal, Asoc. de Agricultores Fundo Belén y Asoc. Agroindustrial Fundo Canín</td>
<td>37.60</td>
</tr>
<tr>
<td>II</td>
<td>Los Pinos – Las Yaras</td>
<td>5.69-7.34</td>
</tr>
<tr>
<td>II</td>
<td>La Banda - Cullona</td>
<td>6.08-8.17</td>
</tr>
<tr>
<td>II</td>
<td>Haras de Capuli – El Golpe</td>
<td>40.83-2.26</td>
</tr>
<tr>
<td>II</td>
<td>Pampa Molina – Sequina y Pampa Molina - Vituna</td>
<td>5.82-6.48</td>
</tr>
<tr>
<td>II</td>
<td>Cocal</td>
<td>5.81</td>
</tr>
<tr>
<td>II</td>
<td>Las Yaras Pueblo, Exsa y Munipata</td>
<td>3.86-14.83</td>
</tr>
<tr>
<td>II</td>
<td>Quebrada Las Brujas – Asoc. Damnificados Nueva Sama</td>
<td>20.94-39.07</td>
</tr>
</tbody>
</table>

Resumiendo lo anterior indicaremos que en el área investigada los niveles de agua más superficiales se encuentran en los sectores Tomasiri Bajo (zona I) y Haras de Capuli (zona II), donde los niveles fluctúan entre 0.83 y 1.54 m; mientras que los niveles más profundos, oscilan entre 12.86 y 14.83 m, encontrándose niveles de hasta 39.07 m en el sector Asociación de Damnificados Nueva Sama en la margen izquierda de la Pampa Sama (Zona II).
HIDRÁULICA SUBTERRÁNEA

8.1.0 Introducción
8.0.0 HIDRÁULICA SUBTERRÁNEA

8.1.0 Introducción

En todo estudio hidrogeológico, los resultados de la hidráulica subterránea permite determinar las características físicas y el funcionamiento del acuífero.

Por otro lado, dentro de la hidráulica subterránea uno de sus componentes es la hidrodinámica; la cual estudia el funcionamiento del acuífero y el movimiento del agua en un medio poroso, es decir cuantifica la capacidad de almacenar y transmitir agua.

En ese sentido, en el valle Sama, no se ha realizado pruebas de bombeo; debido que no existen pozos operativos con características apropiadas que nos permite evaluar el acuífero mencionado.
HIDROGEOQUÍMICA

9.1.0 Recolección de muestras de agua subterránea
9.2.0 Resultados de los análisis físico – químico
9.3.0 Representación gráfica
9.4.0 Aptitud de las aguas para el riego
9.5.0 Potabilidad de las aguas
9.0.0 HIDROGEOQUÍMICA

La hidrogeoquímica es fase importante en todo estudio hidrogeológico, cuyo resultado permitirá conocer las características químicas actuales del agua almacenado en el acuífero y, la evolución que ha experimentado en relación a la concentración salina.

Por otro lado, debe señalarse que la calidad de las aguas subterráneas depende de varios factores como:

- Litología del acuífero y velocidad de circulación
- Calidad del agua de infiltración.
- La relación con otras aguas o acuíferos.
- Leyes de movimientos de sustancias transportadoras de agua.

9.1.0 Recolección de muestras de agua subterránea

Cuando se efectuaba el inventario de pozos, simultáneamente se procedió a recoger muestras de agua de los pozos, posteriormente se seleccionó 25; las mismas que constituyen la Red Hidrogeoquímica.

La red hidrogeoquímica (25 pozos) está distribuida de la siguiente manera: 07 pozos en el distrito de Sama – Inclán y 18 en Sama – Las Yaras.

La red de control para el valle se muestra en el plano de la Lámina N° 9.1 y las mediciones realizadas en las muestras en los cuadros del Anexo V: Hidrogeoquímica.

Inicialmente con un analizador de agua portatil, a la totalidad de muestras recolectadas, se determinó la conductividad eléctrica, el pH, los sólidos totales disueltos (STD) y la temperatura (°C), posteriormente se seleccionó 20 muestras, que fueron preservadas adecuadamente y enviadas al Laboratorio Valle Grande, de la ciudad de San Vicente Cañete para el respectivo análisis físico-químico.

9.2.0 Resultados de los análisis físico-químicos

En el Anexo V: Hidrogeoquímica, se muestran los cuadros con los resultados de los análisis físico-químicos de las muestras de agua, que se recolectaron en todo el área de estudio.

9.2.1 Conductividad eléctrica del agua (C.E)

La conductividad eléctrica (C.E.) es la propiedad que tiene el agua de conducir la corriente eléctrica. Depende de varios factores, principalmente la concentración y tipo de sales ionizables disueltas, naturaleza, carga formada y temperatura.
La conductividad eléctrica se incrementa en una relación de 2 % por cada grado centígrado. Por esta razón, las medidas que se han realizado se relacionan a un valor de referencia (25 °C).

Considerando que la conductividad se mide rápidamente, su determinación representa un método adecuado para estimar la calidad química del agua.

El estudio hidrogeoquímico realizado en el área de estudio, ha determinado que la conductividad eléctrica de las aguas fluctúa mayormente entre 1.67 y 8.73 mmhos/cm, valores que representan a aguas de mediana a alta mineralización, encontrándose valores puntuales hasta de 20.81 mmhos/cm, que son aguas muy mineralizadas (salobres).

Con los valores de la conductividad eléctrica – C.E, se ha elaborado el plano de Isoconductividad Eléctrica que se muestra en la Lámina Nº 9.1

A continuación, se describe el grado de mineralización del agua subterránea almacenada en el acuífero Sama.

9.2.1.1 Zona I : Sama – Inclán

En esta zona, la conductividad eléctrica fluctúa mayormente entre 2.24 y 2.84 mmhos/cm, valores que corresponden a aguas de alta mineralización, aunque puntualmente se encuentran un valor de 0.69 mmhos/cm.

Entre los sectores Sama Grande e Inclán, la conductividad eléctrica fluctúa de 2.39 a 2.56 mmhos/cm; mientras que entre los sectores Poquera y Tomasiri Bajo, varía de 2.24 a 2.84 mmhos/cm. (aguas de alta mineralización).

Por otro lado, en la Pampa El Pedregal, sector Asociación de Agricultores Fundo Belén puntualmente se encuentra un valor de 0.69 mmhos/cm, agua de buena mineralización (pozo IRHS 13, distrito de Sama – Inclán).

9.2.1.2 Zona II : Sama – Las Yaras

En esta zona, la conductividad eléctrica del agua fluctúa mayormente entre 1.67 y 8.73 mmhos/cm, valores que representan a aguas de medianamente mineralizadas a alta mineralización (salobres). Además existen valores puntuales hasta de 20.81 mmhos/cm. (pozo IRHS 18), ubicado en el distrito Sama – Las Yaras (altamente solobres).
Entre los sectores Los Pinos y Las Yaras (lugares cultivables), la conductividad eléctrica varía mayormente de 2.00 a 4.49 mmhos/cm (aguas salobres); mientras que entre los sectores La Banda y Cuilona, varían entre 5.39 y 6.00 mmhos/cm (aguas altamente mineralizadas). Por otro lado, entre los sectores Haras de Capuli y El Golpe, las conductividades eléctricas varían de 7.12 a 20.81 mmhos/cm, valores que representan aguas altamente salobres.

En los sectores Pampa Molina – Sequina y Pampa Molina - Vituña, las CE varían de 7.45 a 8.01 mmhos/cm; mientras que en los sectores Cocal y Agua Dulce – Vituña, varían entre 1.67 y 1.89 mmhos/cm; valores que representan aguas medianamente mineralizadas.

Finalmente, en la Pampa Sama (margen derecha) entre los sectores Exsa (Ex Química Sol) y Munipata, la conductividad eléctrica varía de 6.84 a 8.73 mmhos/cm; valores que representan aguas altamente mineralizadas; mientras que en la (margen izquierda), en el sector Quebrada de las Brujas, fluctúan entre 2.06 y 2.95 mmhos/cm (aguas medianamente mineralizadas).

El cuadro Nº 9.1, muestra el resumen de las conductividades eléctricas obtenidas en el área de estudio.

CUADRO Nº 9.1
CONDUCTIVIDADES ELECTRICAS EN EL ÁREA DE ESTUDIO
VALLE SAMA – 2005

<table>
<thead>
<tr>
<th>Zona</th>
<th>Sector</th>
<th>Conductividad Eléctrica (mmhos / cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Sama Grande – Inclán</td>
<td>2.39 – 2.56</td>
</tr>
<tr>
<td></td>
<td>Poquera – Tomarisí Bajo</td>
<td>2.24 – 2.84</td>
</tr>
<tr>
<td></td>
<td>Pampa El Pedregal</td>
<td>0.69</td>
</tr>
<tr>
<td>II</td>
<td>Los Pinos – Las Yaras</td>
<td>2.00 – 4.49</td>
</tr>
<tr>
<td></td>
<td>La Banda – Cuilona</td>
<td>5.39 – 6.00</td>
</tr>
<tr>
<td></td>
<td>Haras de capuli – El Golpe</td>
<td>7.12 – 20.81</td>
</tr>
<tr>
<td></td>
<td>Pampa Molina – Sequina y Pampa Molina – Vituña</td>
<td>7.45 – 8.01</td>
</tr>
<tr>
<td></td>
<td>Cocal y Agua Dulce - Vituña</td>
<td>1.67 – 1.89</td>
</tr>
<tr>
<td></td>
<td>Exsa – Munipata</td>
<td>6.84 – 8.73</td>
</tr>
<tr>
<td></td>
<td>Quebrada de Las Brujas</td>
<td>2.06 – 2.95</td>
</tr>
</tbody>
</table>

9.2.2 Dureza total y pH

- **Dureza total**

La dureza total de las aguas en el área de estudio fluctúa entre 319.64 (pozo IRHS 31, sector Quebrada de Las Brujas) y 4.126.24 ppm de CaCO₃ (pozo IRHS 18 sector Haras de Capuli) ambas muestras ubicadas en el distrito de Sama – Las Yaras, valores que representan aguas muy duras. Ver cuadro Nº 9.2
CUADRO N° 9.2
RANGO DE CALIDAD DE LAS AGUAS
VALLE SAMA – 2005

<table>
<thead>
<tr>
<th>Clasificación</th>
<th>Rangos</th>
<th>Ppm de CaCO₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua muy blanda</td>
<td>< 3</td>
<td>< 30</td>
</tr>
<tr>
<td>Agua blanda</td>
<td>3 – 15</td>
<td>30 – 150</td>
</tr>
<tr>
<td>Agua dura</td>
<td>15 – 30</td>
<td>150 – 300</td>
</tr>
<tr>
<td>Agua muy dura</td>
<td>> 30</td>
<td>> 300</td>
</tr>
</tbody>
</table>

A continuación se describe brevemente por zonas, la calidad de las aguas en el valle basándose en la dureza obtenida en los análisis físico – químicos.

- **Zona I**

En esta zona, la dureza total de las aguas subterráneas varía entre 606.71 y 863.22 ppm de CaCO₃, valores que representan aguas muy duras.

Así, entre los sectores Sama Grande e Inclán, la dureza fluctúa entre 769.54 y 791.08 ppm de CaCO₃, mientras que entre los sectores Poquera y Tomasín Bajo varían de 606.71 a 863.22 ppm de CaCO₃, valores que corresponden a aguas muy duras.

Puntualmente, se ubica un valor de 67.64 ppm de CaCO₃, en la Pampa de Pedregal (pozo IRHS 13, sector Asociación de Agricultores Fundo Belén); valor que representan aguas blandas.

- **Zona II**

En esta zona, la dureza de las aguas varía entre 319.64 y 4126.24 ppm de CaCO₃, valores que se clasifican como aguas muy duras (ver cuadro N° 8.2).

Así, entre los sectores Los Pinos y Las Yaras (lugares cultivables) la dureza fluctúa entre 628.25 y 726.45 ppm de CaCO₃; mientras que entre los sectores La Banda y Cuilona, fluctúa entre 1067.13 y 1872.24 ppm de CaCO₃; valores que corresponden a aguas muy duras. Por otro lado, entre los sectores Haras de Capuli y El Golpe, la dureza de las aguas varía de 2287.57 a 4126.24 ppm de CaCO₃.

En los sectores Pampa Molina – Sequina y Pampa Molina – Vitufía, la dureza de las aguas subterráneas varía de 1957.91 a 2002.40 ppm de CaCO₃ respectivamente; mientras que en el sector Agua Dulce – Vitufía llega a 400.30 ppm de CaCO₃.
Finalmente, en la Pampa Sama (margen derecha) sectores Exsa (Ex Química Sol) y Muniapata, la dureza de las aguas subterráneas varía de 1592.18 a 2068.63 ppm de CaCO₃ respectivamente; mientras que en la (margen izquierda) sector Quebrada de Las Brujas varían entre 319.64 865.63 ppm de CaCO₃ valores que representan aguas muy duras.

En el cuadro N° 9.3, se muestra el resumen de la variación de la dureza de las aguas subterráneas en el área de estudio.

CUADRO N° 9.3
VARIACIONES DE LA DUREZA
VALLE SAMA - 2005

<table>
<thead>
<tr>
<th>Zona</th>
<th>Dureza (ppm)</th>
<th>Clasificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>606.71 - 863.22</td>
<td>Muy duras</td>
</tr>
<tr>
<td>II</td>
<td>319.64 - 4126.24</td>
<td>Muy duras</td>
</tr>
</tbody>
</table>

- **pH**

Viene a ser la medida de la concentración de los iones hidrógeno en el agua, el cual es utilizado como índice de alcalinidad o acidez del agua. En el área de estudio, el pH fluctúa entre 6.85 (pozo IRHS 10, sector El Golpe) y 8.46 (pozo IRHS 11, sector Las Yaras, sectores ubicados en el distrito de Sama - Las Yaras, valores que corresponden a aguas ligeramente ácidas a alcalinas respectivamente.

CUADRO N° 9.4
CLASIFICACIÓN DEL AGUA SEGÚN EL pH

<table>
<thead>
<tr>
<th>pH</th>
<th>Clasificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH = 7</td>
<td>Neutra</td>
</tr>
<tr>
<td>pH < 7</td>
<td>Agua ácida</td>
</tr>
<tr>
<td>pH > 7</td>
<td>Agua alcalina</td>
</tr>
</tbody>
</table>

A continuación se clasifica las aguas almacenadas en el acuífero por zonas, Basándose en los resultados de los análisis físico-químicos realizados en muestras de agua, y tomando como referencia el cuadro N° 9.4, las aguas subterráneas del acuífero Sama presenta las siguientes características.

- Así en la zona I, el pH varía de 6.90 a 8.22; (sector Tomasiri Bajo y Asociación de Agricultores Fundo Belén distrito de Sama - Inclán), valores que corresponden a aguas ligeramente ácidas a alcalinas respectivamente.

- En la zona II, el pH fluctúan entre 6.85 (pozo IRHS 10) y 8.46 (pozo IRHS 11) valores que corresponden a aguas ligeramente ácidas a alcalinas.
En el cuadro N° 9.5, se muestra el resumen de los valores del pH obtenidos en el área de estudio.

CUADRO N° 9.5
CLASES DE AGUA SEGÚN EL pH
VALLE SAMA – 2005

<table>
<thead>
<tr>
<th>Zona</th>
<th>pH</th>
<th>Clasificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>6.90 – 8.22</td>
<td>Ligeramente ácidas – alcalinas</td>
</tr>
<tr>
<td>II</td>
<td>6.85 – 8.46</td>
<td>Ligeramente ácidas – alcalinas</td>
</tr>
</tbody>
</table>

Resumiendo lo anterior, indicaremos que las aguas almacenadas en el acuífero de ligeramente ácidas a alcalinas.

9.3.0 Representación gráfica

9.3.1 Diagrama de Schoeller

En la interpretación de los análisis, se utilizan estos diagramas con el propósito de conocer los elementos predominantes tanto de aniones como de cationes.

En el diagrama de Schoeller, se lleva a intervalos regulares sobre ejes divididos según una escala logarítmica, el contenido en mg/l de los principales iones contenidos en el agua. Paralelamente, los ejes logarítmicos permiten de inmediato transformar los mg/l de cada ión representado en meq/l, también expresa su concentración en forma de compuestos en mg/l, tal como se indicaban antiguamente en los análisis químicos.

Los ejes en meq/l también pueden ser utilizados para representar el contenido mineral total del agua.

Los puntos que se logran mediante la representación de cada ión, son unidos por una recta, obteniéndose una línea quebrada que será característica para el análisis gráfico. La representación de varios análisis permite hacer comparaciones y diferencias de los distintos tipos de agua, permitiendo obtener grupos definidos.

Los resultados de los análisis se muestran en las figuras del N° 01 al 40 del Anexo V: Hidrogeoquímica.

9.3.2 Familias hidrogeoquímicas de las aguas subterráneas

El análisis de los diagramas tipo Schoeller, a determinado las familias hidrogeoquímicas que predominan en el área de estudio, tal como se describe por zonas a continuación.
• Zona I

En esta zona predomina la familia sulfatada sódica observándose en segundo orden la familia sulfatada cálcica.

Las familias sulfatada sódica y sulfatada cálcica, prevalece en los sectores Sama Grande, Inclán, Poquera y Pampa Pedregal Asociación de Agricultores Fundo Belén; mientras que la única muestra clorurada sódica en el sector Tomasiri bajo.

• Zona II

En esta zona, la familia predominante es la sulfatada sódica, seguido en importancia por la clorurada sódica.

La sulfatada sódica, se aprecia en los sectores Las Yaras, La banda, El Golpe, Agua Dulce – Vicuña, Exsa (Ex química sol) y Quebrada Las Brujas; mientras que la familia clorurada sódica, en los sectores Haras de Capuli, Pampa Molina – Sequina, Pampa Molina – Vituña y Mуницип.

En el cuadro Nº 9.6, se muestra el resumen de las familias hidrogeoquímicas que predominan en el área de estudio.

CUADRO Nº 9.6
FAMILIAS HIDROEQUÍMICAS EN EL AREA DE ESTUDIO
VALLE SAMA – 2005

<table>
<thead>
<tr>
<th>Zona</th>
<th>Familias Hidrogeoquímicas</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Sulfatada sódica – Sulfatada cálcica</td>
</tr>
<tr>
<td>II</td>
<td>Sulfatada sódica – Clorurada sódica</td>
</tr>
</tbody>
</table>

Resumiendo todo lo anterior, indicaremos que la familia hidrogeoquímica predominante en el valle Sama es la sulfatada sódica, seguido de la familia clorurada sódica.

9.4.0 Aptitud de las aguas para el riego

En el área de estudio, la calidad de las aguas subterráneas con fines de riego han sido clasificadas de acuerdo a lo siguiente:

• Conductividad eléctrica
• Relación de adsorción de sodio (RAS) y conductividad eléctrica.
• Contenido de boro

9.4.1 Clases de agua según la conductividad eléctrica

El agua de acuerdo a los valores de la conductividad eléctrica (C.E.) tiene una clasificación específica, la misma que fue determinada por Wilcox, tal como se aprecia en el cuadro Nº 9.7
CUADRO Nº 9.7
CLASIFICACIÓN DEL AGUA PARA RIEGO SEGÚN WILCOX

<table>
<thead>
<tr>
<th>Calidad de Agua</th>
<th>Conductividad Eléctrica (mmhos/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excelente</td>
<td>< 0.25</td>
</tr>
<tr>
<td>Buena</td>
<td>0.25 - 0.75</td>
</tr>
<tr>
<td>Permisible</td>
<td>0.75 - 2.00</td>
</tr>
<tr>
<td>Dudosa</td>
<td>2.00 - 3.00</td>
</tr>
<tr>
<td>Inadecuada</td>
<td>> 3.00</td>
</tr>
</tbody>
</table>

A continuación se clasifica el agua subterránea con fines de riego de acuerdo a la conductividad eléctrica, según Wilcox.

• Zona I

En esta zona, la conductividad eléctrica fluctúa mayormente entre 2.24 y 2.84 mmhos/cm; valores que representan aguas de dudosa calidad, aunque puntualmente se encuentra un valor de 0.69 mmhos/cm y que representa aguas de buena calidad.

El cuadro Nº 9.8 muestra la clasificación del agua para riego por distrito político, en la zona I.

<table>
<thead>
<tr>
<th>Distrito</th>
<th>Rango de C.E (mmhos/cm)</th>
<th>Calidad de las Aguas Subterráneas según Wilcox</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sama Grande - Inclán</td>
<td>2.39 - 2.56</td>
<td>Dudosa</td>
</tr>
<tr>
<td>Poquera - Tomasiri Bajo</td>
<td>2.24 - 2.84</td>
<td>Dudosa</td>
</tr>
<tr>
<td>Pampa El Pedregal</td>
<td>0.69</td>
<td>Buena</td>
</tr>
</tbody>
</table>

• Zona II

La conductividad eléctrica del agua fluctúa mayormente entre 1.67 y 8.73 mmhos/cm, valores que según Wilcox, representan aguas de permisible a inadecuada calidad respectivamente, aunque puntualmente se encuentra un valor de hasta 20.81 mmhos/cm. Ver cuadro Nº 9.9

CUADRO Nº 9.9
CLASIFICACIÓN DEL AGUA SEGÚN LA C.E – ZONA II

<table>
<thead>
<tr>
<th>Sector</th>
<th>Rango de C.E (mmhos/cm)</th>
<th>Calidad de Las Aguas Subterráneas según Wilcox</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Pinos – Las Yaras</td>
<td>2.00 - 4.49</td>
<td>Dudosa – Inadecuada</td>
</tr>
<tr>
<td>La Banda – Cuiloma</td>
<td>7.39 - 6.00</td>
<td>Inadecuada</td>
</tr>
<tr>
<td>Haras de Capuli – El Golpe</td>
<td>7.12 - 20.81</td>
<td>Inadecuada</td>
</tr>
<tr>
<td>Pampa Molina – Sequina y Pampa Molina – Vituña</td>
<td>7.45 - 8.01</td>
<td>Inadecuada</td>
</tr>
<tr>
<td>Cocal – Agua Dulce – Vituña</td>
<td>1.67 - 1.89</td>
<td>Permisible</td>
</tr>
<tr>
<td>Exsa – Muniapa</td>
<td>6.84 - 8.73</td>
<td>Inadecuada</td>
</tr>
<tr>
<td>Quebrada de Las Brujas</td>
<td>2.06 - 2.95</td>
<td>Dudosa</td>
</tr>
</tbody>
</table>
En el cuadro Nº 9.10 se muestra el resumen de la clasificación de las aguas para riego obtenidos en el valle estudiado.

CUADRO Nº 9.10

<table>
<thead>
<tr>
<th>Zona</th>
<th>Rango de C.H. (mhos/cm)</th>
<th>Calidad de Las Aguas Subterráneas según Wilcox</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2.24 – 2.84</td>
<td>Dudosa</td>
</tr>
<tr>
<td>II</td>
<td>1.67 – 8.73</td>
<td>Permisible – Inadecuada</td>
</tr>
</tbody>
</table>

Resumiendo todo lo anterior, diremos que las aguas para riego en el valle Sama según la conductividad eléctrica varían entre permisible a calidad inadecuada.

9.4.2 Clases de agua según el RAS y la Conductividad Eléctrica

Las aguas subterráneas con fines de riego, también han sido clasificadas teniendo como base las Normas propuestas por el Laboratorio de Salinidad de Riverside, California EE.UU.; donde se considera la concentración total de sales, expresada en términos de la conductividad eléctrica y la Relación de Adsorción de Sodio (RAS), que tiene la siguiente expresión:

\[
\text{RAS} = \frac{\text{Na}^{+}}{\sqrt{\frac{\text{Ca}^{++} + \text{Mg}^{++}}{2}}}
\]

Ver figuras Nºs 01 al 10 del Anexo V: Hidrogeoquímica.

A continuación se describe las clases de agua para riego que predominan en las diferentes zonas que conforman el valle.

- **Zona I**

La clase de agua predominante es la C₄S₁, (salinidad alta y bajo contenido de sodio) aguas de mala calidad para la agricultura. Prevalencia en los sectores Sama Grande, Inclán, Poquera y Tomasiri Bajo, todos del distrito de Sama - Inclán. En la Pampa El Pedregal, hay u7na muestra de la clase C₂S₁ (salinidad media y bajo contenido de sodio).
Zona II

En esta zona, predomina la clase fuera de clasificación (Cfs) (altamente salinas y alto contenido de sodio) aguas no aptas para el riego, predominan en los sectores Exsa (Ex Química Sol), Munipata, La Banda, Haras de Capuli, El Golpe, Cuilona, Pampa Molina – Sequía y Pampa Molina – Vituña. Por otro lado, en menor proporción se encuentran aguas de calce C3S1 y C4S1, predomina en los sectores Las Yaras (lugares cultivables), Quebrada de Las Brujas y Agua Dulce - Vituña.

En el cuadro Nº 9.11 se muestra un resumen de las aguas para riego según el RAS y la C.E obtenida en el valle Sama.

<table>
<thead>
<tr>
<th>Zona</th>
<th>Clasificación de las Aguas</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>C3S1 y C4S1</td>
</tr>
<tr>
<td>II</td>
<td>C4S1, S2, S3, C5S1, C6S1</td>
</tr>
</tbody>
</table>

Resumiendo podemos indicar que las aguas para riego según el RAS y la C.E, mayormente están fuera de clasificación, es decir altamente salinas y las de clase C3S1 y C4S1; el primero destaca en la zonas II: distrito de Sama – Las Yaras, mientras que la segunda puntualmente en ambas zonas.

9.4.3 Clases de agua según el contenido de Boro

Los valores del contenido del boro de las muestras de agua analizadas en el valle estudiado se muestra en los cuadros del Anexo IV: Hidrogeoquímica; en donde se aprecia que la mayoría de valores están por encima de 4.46 ppm.

Para la clasificación de las aguas subterráneas para el riego según el contenido de boro, se tomó como base los rangos presentados en el cuadro Nº 9.12

<table>
<thead>
<tr>
<th>Clases</th>
<th>Contenido de Boro (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buena</td>
<td>menos de 0.50</td>
</tr>
<tr>
<td>Condicionada</td>
<td>0.50 a 4.00</td>
</tr>
<tr>
<td>No recomendable</td>
<td>más de 4.00</td>
</tr>
</tbody>
</table>

Fuente: Palacios y Añeves (1980)
• En la zona I conformada por el distrito de Sama - Inclán, el contenido de boro varía mayormente de 7.75 a 9.50 ppm, valores que en términos generales representan aguas de clase no recomendable, aunque puntualmente se observa un valor de 0.57 ppm en la Pampa de Pedregal (pozo IRHS 13).

• En la zona II que comprende el distrito de Sama – Las Yaras, el contenido de boro varía de 4.46 a 30.36 ppm; valores que indican que las aguas son de calidad no recomendable.

El cuadro N° 9.13 muestra la clasificación de las aguas según el contenido de boro en el valle Sama.

CUADRO N° 9.13
CLASIFICACIÓN DE LAS AGUAS SEGÚN EL CONTENIDO DE BORO
VALLE SAMA – 2005

<table>
<thead>
<tr>
<th>Zona</th>
<th>Contenido de Boro (ppm)</th>
<th>Clasificación de las Aguas</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>7.75 - 9.50</td>
<td>Calidad No Recomendable</td>
</tr>
<tr>
<td>II</td>
<td>4.46 - 30.36</td>
<td>Calidad No Recomendable</td>
</tr>
</tbody>
</table>

Resumiendo lo anterior, indicaremos que las aguas de acuerdo al contenido de boro corresponden a aguas de calidad no recomendable.

9.5.0 Potabilidad de las aguas

La potabilidad de las aguas subterráneas del valle en estudio, se ha analizado bajo dos aspectos:

• Análisis bacteriológico
• Límites máximos tolerables de potabilidad, establecido por la Organización Mundial de la Salud (O.M.S.) en Ginebra 1972. Ver cuadro N° 9.14

CUADRO N° 9.14
LÍMITES MÁXIMOS TOLERABLES

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Límite Máximo Tolerable *</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7 - 8.50</td>
</tr>
<tr>
<td>Dureza (ppm)</td>
<td>250 – 500</td>
</tr>
<tr>
<td>Ca (mg/l)</td>
<td>75 - 200</td>
</tr>
<tr>
<td>Mg (mg/l)</td>
<td>125</td>
</tr>
<tr>
<td>Na (mg/l)</td>
<td>250</td>
</tr>
<tr>
<td>Cl (mg/l)</td>
<td>250</td>
</tr>
<tr>
<td>SO₄ (mg/l)</td>
<td>250</td>
</tr>
</tbody>
</table>

* Límites establecidos por la Organización Mundial de la Salud.
9.5.1 Análisis bacteriológico

Según las normas bacteriológicas, las aguas se califican como buena, sospechosa y deficiente calidad; donde su interpretación puede ser variable dificultando la adopción inmediata de medidas correctivas.

Se utiliza a los efectos de aplicación de las normas, a las bacterias coliformes como únicos organismos indicadores de contaminación. Si bien se puede con los métodos modernos identificar cualquier otro patógeno, su investigación no es práctica.

Los límites bacteriológicos mínimos se establecen con dos tipos de exámenes:

- Método de las porciones múltiples.
- Método de las membranas filtrantes.

El agua destinada a la bebida y uso doméstico no debe transmitir patógenos. Como el indicador bacteriano más numeroso y específico de la contaminación fecal, tanto de origen humano como animal es la Escherichia coli, en las muestras de 100 ml de cualquier agua de bebida no se debe detectar esa bacteria ni organismos coliformes termoresistentes que provienen de aguas residuales, aguas y suelos que han sufrido contaminación fecal, efluentes industriales, materias vegetales y suelos en descomposición.

Para el abastecimiento de agua potable, utilizando aguas subterráneas protegidas de gran calidad, se lleva a cabo una serie de operaciones de tratamiento que reducen los agentes patógenos y demás contaminantes a niveles insignificantes, no perjudiciales para la salud.

Dentro de los microorganismos indicadores de contaminación del agua tenemos a la Escherichia coli, a las bacterias termoresistentes y otras bacterias coliformes, los estreptococos fecales y las esporas de clostridia; las cuales se describen a continuación.

- Escherichia coli

Pertenece a la familia enterobacteriácea, se desarrolla a 44 ºC – 45ºC en medios complejos, fermenta la lactosa y el manitol liberando ácido y gas. Algunas cepas pueden desarrollarse a 37ºC pero no a 44 – 45ºC y algunos no liberan gas.

La Escherichia coli abunda en las heces de origen humano y animal, se halla en las aguas residuales, en los efluentes tratados y en todas las aguas y suelos naturales que han sufrido una contaminación fecal. Este microorganismo puede existir e incluso proliferar en aguas tropicales que no han sido objeto de contaminación fecal de origen humano.
• **Bacterias coliformes termoresistentes**

Comprende el género *Escherichia* y fermenta la lactosa. Estas bacterias pueden proceder también de aguas orgánicamente enriquecidas, como efluencia industriales o de materias vegetales y suelos en descomposición.

Las concentraciones de coliformes termoresistentes están en relación directa con las *Escherichia coli*.

• **Organismos coliformes (total de coliformes)**

Los organismos del grupo coliforme son buenos indicadores microbianos de la calidad del agua de bebida, debido a que su detección y recuento en el agua son fáciles.

Se desarrollan en presencia de sales biliares u otros agentes tensioactivos y fermenta la lactosa a 35 – 37°C produciendo ácido, gas y aldehído en un plazo de 24 a 48 horas.

Los organismos coliformes pueden hallarse tanto en las heces como en el medio ambiente (aguas ricas en nutrientes, suelos, materias vegetales en descomposición) y también en el agua de bebida con concentraciones de nutrientes relativamente elevadas.

9.5.1.1 **Características biológicas del agua subterránea**

La importancia de los análisis microbiológicos radica en la rápida detección de la contaminación. Estos análisis son microscópicos, tanto cualitativa como cuantitativa.

Los resultados se pueden expresar en mg/l, así como en unidades de área o de volumen, donde la aparición de 300 unidades o más por ml, puede desarrollar malos olores y gustos.

• En la *zona I*, de las dos muestras analizadas solo una muestra (pozo IRHS 01) presenta valores de los coliformes fecales dentro de los límites permisibles y es calificada como agua potable; mientras que los valores de coliformes fecales del (pozo IRHS 02) sobrepasa los límites permisibles de allí que es calificada como no potable. Por otro lado, los valores de coliformes totales de ambas muestras sobrepasan los límites permisibles.

• En la *zona II*, el análisis microbiológico realizado a solo una muestra de agua, indican que son aguas no potables, debido a que los coliformes totales y fecales sobrepasan los límites permisibles.
Desde el punto de vista bacteriológico, mayormente las muestras analizadas no cumplen con los requisitos microbiológicos y son consideradas aguas no potables. Ver cuadro N° 9.15

CUADRO N° 9.15
RESULTADOS DE LOS ANÁLISIS MICROBIOLOGÍCOS DE LAS AGUAS SUBTERRÁNEAS. VALLE SAMA – 2005

<table>
<thead>
<tr>
<th>Zona</th>
<th>Sector</th>
<th>IRHS N°</th>
<th>Coliformes Totales</th>
<th>Coliformes Fecales</th>
<th>Agua Potable</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Inclán</td>
<td>01</td>
<td>15 NMP/100 ml</td>
<td><3 NMP/100 ml</td>
<td><3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>02</td>
<td>1100 NMP/100 ml</td>
<td>500 NMP/100 ml</td>
<td><3</td>
</tr>
<tr>
<td>II</td>
<td>Las Yaras</td>
<td>29</td>
<td>1600 NMP/100 ml</td>
<td>1600 NMP/100 ml</td>
<td><3</td>
</tr>
</tbody>
</table>

Resumiendo lo anterior, indicaremos que las muestras analizadas presentan valores de los coliformes totales y fecales que sobrepasan los límites permisibles.

9.5.2 Niveles de concentración de los iones cloruro, sulfato y magnesio

- **Ión cloruro (Cl−)**

Los cloruros presentes en las aguas son en general muy solubles, estables en disolución y difícilmente precipitables. En el área de estudio, los valores obtenidos de los cloruros oscilan entre 290.39 y 6031.81 mg/l (8.18 – 169.91 meq/l).

Así observamos que en la zona I, distrito de Sama - Inclán, los valores fluctúan mayormente entre 355.36 y 530.73 mg/l (10.01 a 14.95 meq/l), encontrándose estos valores entre los sectores Sama Grande y Tomasiri Bajo respectivamente. Puntualmente se encuentra un valor de 66.39 mg/l (1.87 meq/l), ubicado en el sector Pampa El Pedregal (pozo IRHS 13).

En la zona II, los valores fluctúan entre 290.39 y 6031.81 mg/l (8.18 a 169.91 meq/l) observándose el valor más alto en el sector Haras de Capuli (pozo IRHS 18) y el más bajo se encuentra en el sector Las Yaras (pozo IRHS 11), del distrito de Sama – Las Yaras.

- **Ión sulfato (SO4 =)**

Estas sales son moderadamente solubles a muy solubles indicándose que las aguas con concentraciones altas de este compuesto actúan como laxantes. Entre 2 y 150 ppm se considera como aguas dulces. Los valores de los niveles de concentración de los sulfatos en las aguas subterráneas del valle en estudio, se observan en los cuadros del Anexo V: Hidrogeoquímica, cuyos rangos de variación se aprecian en el cuadro N° 9.16
A continuación, se hará un breve comentario de los valores obtenidos del ión sulfato por zonas:

- **En la Zona I, distrito de Sama – Inclán**, los valores del ión sulfato, fluctúan entre 489.60 y 661.44 ppm y se encuentran entre los sectores Sama Grande y Tomasiri Bajo, aunque puntualmente se encuentran un valor de 130.56 ppm, ubicado en La Pampa El Pedregal (pozo IRHS 13).

- **En la Zona II, distrito de Sama – Las Yaras**, el ión sulfato fluctúa de 340.80 y 1621.44 ppm, dichos valores se encuentran en los sectores Agua Dulce – Vituña y El Golpe.

Analizando las dos (02) zonas que conforman el acuífero estudiado, podemos indicar que el ión sulfato contenido en las aguas mayormente sobrepasa los límites permisibles y pueden causar efectos laxantes al ingerirlo, aunque puntualmente en la zona I distrito de Sama – Inclán se ubica un valor que se encuentra dentro del límite máximo permisible.

- **Ión magnesio (Mg ++)**

 La elevada concentración de magnesio en el agua de consumo doméstico, no es recomendable; debido a que origina efectos laxantes y posee características de sabor amargo al agua.

 Los rangos de variación del ión magnesio en las diferentes muestras de agua obtenidas del acuífero se aprecian en el cuadro N° 9.16, cuyo análisis es el siguiente:

- **En la Zona I, distrito de Sama – Inclán**, los valores del ión magnesio, fluctúan entre 3.12 y 51.36 ppm y se encuentran ubicados en los sectores Sama Grande, Poquera, Tomasiri Bajo y Pampa El Pedregal.

- **En la Zona II, distrito de Sama – Las Yaras**, el ión magnesio fluctúa mayormente de 18.00 y 116.40 ppm, dichos valores se encuentran en los sectores Quebrada de Las Brujas y Munipata; aunque en menor proporción se encuentran valores que varían entre 126.36 y 379.92 ppm, los mismos que sobrepasan los límites permisibles.

Resumiendo en el valle Sama, se obtuvieron valores que fluctúan mayormente entre 3.12 y 116.40 ppm, los mismos que se encuentran por debajo del rango permisible establecido por la Organización Mundial de la Salud; por lo tanto no existe peligro en cuanto a la concentración de este elemento.
CUADRO N° 9.16
COMPARACIÓN ENTRE LOS LÍMITES MÁXIMOS TOLERABLES Y LOS RANGOS OBTENIDOS DE LAS MUESTRAS DE AGUA ANALIZADAS
VALLE SAMA – 2005

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Límite Mínimo Tolerable</th>
<th>Nivel de Concentración General</th>
<th>Nivel de Concentración Dominante</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.00 - 8.50</td>
<td>6.85 - 8.46</td>
<td>7.00 - 8.46</td>
</tr>
<tr>
<td>Dureza</td>
<td>250 - 500</td>
<td>319.64 - 4126.24</td>
<td>606.71 - 2287.57</td>
</tr>
<tr>
<td>Ca (mg/l)</td>
<td>75 - 200</td>
<td>21.80 - 1014.00</td>
<td>97.60 - 670.60</td>
</tr>
<tr>
<td>Mg (mg/l)</td>
<td>125</td>
<td>3.12 - 379.92</td>
<td>3.12 - 116.40</td>
</tr>
<tr>
<td>Na (mg/l)</td>
<td>120</td>
<td>124.89 - 2900.07</td>
<td>200.33 - 1250.05</td>
</tr>
<tr>
<td>Cl (mg/l)</td>
<td>250</td>
<td>66.39 - 6031.81</td>
<td>290.39 - 2240.05</td>
</tr>
<tr>
<td>SO₄ (mg/l)</td>
<td>250</td>
<td>130.56 - 1621.44</td>
<td>340.80 - 1399.68</td>
</tr>
</tbody>
</table>

9.5.3 Nivel de sólidos totales disueltos (STD)

El nivel de los sólidos totales disueltos significa la cantidad total de sales disueltas en un litro de agua y se expresa en ppm.

A continuación, se describe brevemente los resultados obtenidos de los STD (análisis físico-químicos) en el valle, para lo cual éste fue dividido en cuatro (02) zonas:

- **Zona I**

 En esta zona, los niveles de los sólidos totales disueltos (STD), fluctúan mayormente entre 1529.60 y 1817.60 ppm (15.30 a 18.18 gr/l), valores corresponden a aguas de mala potabilidad; observándose el valor mínimo en el sector Sama Grande y el máximo en Poquera respectivamente.

 Entre los sectores Sama Grande e Inclán, los niveles de STD fluctúan de 1529.60 a 1638.40 ppm; mientras que entre los sectores Poquera y Tomasiri Bajo, varían entre 1568.00 y 1817.60 ppm, valores que corresponden a aguas de mala potabilidad.

 En la Pampa El Pedregal, sector Asociación de Agricultores Fundo Belen, se encuentra puntualmente un valor de 441.60 ppm y representan a aguas de aceptable potabilidad.

- **Zona II**

 En esta zona, los niveles de STD, fluctúan mayormente entre 1209.60 y 5587.20 ppm (12.10 a 55.87 gr/l), valores que sobrepasan los límites de potabilidad; puntualmente se encuentran valores mínimos que varían de 600.00 a 830 ppm (pozos IRHS 5 y 32 distrito de Sama – las Yaras, representan aguas de aceptable potabilidad) y un valor máximo de 13318.40 ppm.
En los sectores Los Pinos y Las Yaras, los niveles de STD fluctúan mayormente entre 1280.00 y 1817.60 ppm; mientras que entre los sectores La Banda y Cuilona, varían de 3449.60 a 3840.00 ppm. Los valores hallados corresponden a aguas de mala potabilidad. Por otro lado, entre los sectores Haras de Capuli y El Golpe, los niveles de STD varían de 4556.80 a 13318.40 ppm.

En los sectores Pampa Molina – Sequina y Pampa Molina – Vituña, los niveles de sólidos totales disueltos fluctúan entre 4768.00 y 5126.40 ppm. En los sectores Cocal y Agua Dulce – Vituña, los valores de STD varían de 830.00 a 1209.60 ppm.

Finalmente, en la Pampa Sama (margen derecha) entre los sectores Exsa (Ex Química Sol) y Municata, los niveles de STD fluctúan entre 4377.60 y 5587.20 ppm; mientras que en la (margen izquierda) sector Quebrada de Las Brujas varían entre 1318.40 y 1888.00 ppm, valores que sobrepasan los límites de potabilidad.

En el cuadro N° 9.17 se muestra el resumen de los valores de los sólidos totales disueltos obtenidos en toda el área de estudio.

<table>
<thead>
<tr>
<th>Zona</th>
<th>STD (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1529.60 – 1817.60 (441.60)</td>
</tr>
<tr>
<td>II</td>
<td>1209.60 – 5587.20 (600 – 830)</td>
</tr>
</tbody>
</table>

Resumiendo todo lo anterior indicaremos que los valores de STD indican que las dos zonas que conforman el valle estudiado sobrepasan los límites permisibles de potabilidad y presentan valores entre 1209.60 y 5587.20 ppm, aunque en ciertos lugares de la zona II se ubican valores entre 441.60 y 830.00 ppm y representan aguas de aceptable potabilidad.

9.5.4 Niveles de dureza y pH

- Dureza

Los niveles de dureza de las aguas subterráneas del valle en estudio, por distrito político, se presentan en el Anexo V: Hidrogeoquímica, del cual deducimos que en la mayor parte del valle estudiado, los niveles o rangos de concentración que predominan, sobrepasan los límites máximos tolerables, establecidos por la Organización Mundial de la Salud.
Los efectos que originan su consumo es que, si las aguas son muy blandas, serían muy agresivas, y por consiguiente no son adecuadas para la elaboración de las bebidas. Por el contrario, si las aguas son muy duras, éstas pueden producir gran consumo de jabón, incrustaciones y dificultad para la cocción de los alimentos.

- **pH**

De manera general, los rangos de variación del pH en el área de estudio varían de 6.85 a 8.46, los mismos que en algunos pozos; sobrepasan los límites máximos tolerables para el uso doméstico.
10.0.0 RESUMEN DE RESULTADOS

- El estudio ha permitido delimitar el acuífero en su integridad y asimismo, ha identificado cinco (05) unidades hidrogeológicas: Afloramientos rocosos, depósitos aluviales, depósitos eólicos, depósitos marinos y depósitos fluviomarinos. Los depósitos aluviales son los más importantes para la prospección y explotación de las aguas subterráneas.

- Los depósitos aluviales conjuntamente con los fluviomarinos; constituyen el acuífero. Entre los depósitos aluviales, se hayan comprendidas las terrazas y el lecho actual del río.

- Los afloramientos rocosos conformados por las formaciones Huayllillas, Moquegua, Guaneros, Toquepala, Volcánico Chocolate y cenizaS Volcánicas, carecen de importancia para la prospección y explotación de las aguas subterráneas y representan en el área de estudio; al basamento rocoso impermeable.

- En el área de estudio se ejecutaron 690 sondeos, de los cuales 428 son eléctricos verticales (SEVs) y 332 por transitorios electromagnéticos (TDEM).

- La interpretación y análisis de los SEVs, y de las secciones geoelectrías determinarán la sección del subsuelo, que actualmente se está interpretando.

- En el área de estudio se han inventariado 22 pozos, de los cuales 6 son tubulares (11.36 %), 4 a tajo abierto (18.18 %) y 3 mixtos (13.64 %). Asimismo, del total de pozos inventariados; 4 son utilizados (operativos), 33 utilizables y 52 no utilizables. Ver cuadros adjuntos.

DISTRIBUCIÓN DE LOS POZOS SEGÚN SU TIPO

<table>
<thead>
<tr>
<th>Distrito</th>
<th>Estadística</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nº de pozos</td>
<td>%</td>
</tr>
<tr>
<td>Sama - Inclán</td>
<td>4</td>
<td>7.69</td>
</tr>
<tr>
<td>%</td>
<td>13.17</td>
<td></td>
</tr>
<tr>
<td>Sama - Las Yaras</td>
<td>2</td>
<td>3.85</td>
</tr>
<tr>
<td>%</td>
<td>19.09</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>11.54</td>
</tr>
</tbody>
</table>

DISTRIBUCIÓN DE LOS POZOS SEGÚN SU ESTADO

<table>
<thead>
<tr>
<th>Distrito</th>
<th>Utilizado</th>
<th>Utilizable</th>
<th>No utilizable</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nº</td>
<td>%</td>
<td>Nº</td>
<td>%</td>
</tr>
<tr>
<td>Sama - Inclán</td>
<td>0</td>
<td>0.00</td>
<td>9</td>
<td>17.31</td>
</tr>
<tr>
<td>Sama - Las Yaras</td>
<td>4</td>
<td>7.69</td>
<td>24</td>
<td>46.15</td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
<td>7.69</td>
<td>33</td>
<td>63.46</td>
</tr>
</tbody>
</table>
• Del total de pozos utilizados (4), dos (2) son de uso doméstico y dos (2) industriales, y el remanente de uso agrícola.

• La profundidad de los pozos en el valle Sama es variado; así en los tubulares llegan hasta 55.09 m, en los tajo abiertos a 40 m y en los mixtos a 60.70 m; lo mismo ocurre con el diámetro de los pozos que también es variable, así en los tubulares fluctúa entre 0.35 y 0.50 m; en los tajo abiertos de 0.98 a 1.00 m y en los mixtos, de 1.30/0.50 a 1.56/0.50 m.

• Del total de pozos equipados (6), 6 tienen motores diesel, 3 eléctricos y un (1) gasolíneo, mientras que del total de bombas, 6 son tipo turbina vertical y una (1) sumergible. y 2 centrales de acuífero.

• El volumen total de agua subterránea explotado del acuífero mediante pozos fue de 28,565.40 m³. Del total de agua explotado, 18,888.60 m³ fue a través de pozos tajo abiertos y 9,676.80 m³ mediante pozos mixtos, todo el volumen explotado en el acuífero es en el distrito de Sama - Las Yarases. Ver cuadro adjunto.

VOLÚMENES DE EXPLOTACIÓN DE LAS AGUAS SUBTERRÁNEAS POR TIPO DE POZO

<table>
<thead>
<tr>
<th>Distrito</th>
<th>Volumen Explotado (m³)</th>
<th>Tajo Abierto</th>
<th>Mixto</th>
<th>Tubular</th>
<th>Total (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sama - Inclán</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Sama - Las Yarases</td>
<td>18,888.60</td>
<td>9,676.80</td>
<td>0.00</td>
<td>28,565.40</td>
<td></td>
</tr>
<tr>
<td>Sub - Total</td>
<td>18,888.60</td>
<td>9,676.80</td>
<td>0.00</td>
<td>28,565.40</td>
<td></td>
</tr>
</tbody>
</table>

VOLÚMENES DE EXPLOTACIÓN DE LAS AGUAS SUBTERRÁNEAS SEGÚN SU USO

<table>
<thead>
<tr>
<th>Distrito</th>
<th>Volumen Explotado (m³)</th>
<th>Doméstico</th>
<th>Agrícola</th>
<th>Pecuario</th>
<th>Industrial</th>
<th>Total (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sama - Inclán</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Sama - Las Yarases</td>
<td>744.60</td>
<td>0.00</td>
<td>0.00</td>
<td>27,820.80</td>
<td>28,565.40</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>744.60</td>
<td>0.00</td>
<td>0.00</td>
<td>27,820.80</td>
<td>28,565.40</td>
<td></td>
</tr>
</tbody>
</table>

• Del volumen total explotado, 744.60 m³ corresponden a uso doméstico, y 27,820.80 m³ a uso industrial. Ver cuadro adjunto.

El acuífero está constituido principalmente por sedimentos aluviales y fluviales del cuaternario reciente. Litológicamente está conformado por bloques, cantos, guijarros, cenizas volcánicas, gravas, arenas, arcillas y limos entremezclados en diferentes proporciones formando horizontes de espesores variables, los mismos que se presentan en forma alternada en sentido vertical.

• La red de control piezométrica en todo el valle estudiado, está conformada por 25 pozos, de los cuales 7 están ubicados en el distrito de Sama – Inclán y 18 en Sama – Las Yarases.
• La morfología de la napa es relativamente uniforme, observándose que el desplazamiento del flujo subterráneo tiene una trayectoria principal; que es de noreste a suroeste. A simismo, su gradiente hidráulica varía de 0.82 a 2.22 %; puntualmente llega hasta 2.96 %. Ver cuadro adjunto.

CARACTERÍSTICAS DE LA MORFOLOGÍA DE LA NAPA FREÁTICA – VALLE SAMA - 2005

<table>
<thead>
<tr>
<th>Zona</th>
<th>Sector</th>
<th>Año – 2005</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sentido</td>
<td>Gradiente</td>
</tr>
<tr>
<td></td>
<td>Flujo</td>
<td>Hidráulica (%)</td>
</tr>
<tr>
<td>I</td>
<td>Sama Grande – Inclán</td>
<td>N - S</td>
</tr>
<tr>
<td></td>
<td>Poquera – Tomasiri Bajo</td>
<td>NE – SO</td>
</tr>
<tr>
<td>II</td>
<td>Los Pinos – Las Yaras</td>
<td>NE – SO</td>
</tr>
<tr>
<td></td>
<td>Exsa, Para y La Banda</td>
<td>N - S</td>
</tr>
<tr>
<td></td>
<td>Munipata, Cuilon y El Golpe</td>
<td>NE-SO</td>
</tr>
<tr>
<td></td>
<td>Quebrada Las Brujas – Cocal</td>
<td>NE-SO</td>
</tr>
<tr>
<td></td>
<td>Pampa Molina – Sequina y Pampa Molina – Vituña</td>
<td>NE-SO</td>
</tr>
</tbody>
</table>

• El nivel de agua más superficial (0.83 – 1.54 m) se encuentra en los sectores Haras de Capuli y Tomasiri Bajo; mientras que los niveles mas profundos, oscilan entre 12.86 y 14.83 m, encontrándose incluso hasta de 39.07 m en la Pampa de Sama. Ver cuadro adjunto.

PROFUNDIDAD DE LA NAPA FREÁTICA – VALLE SAMA – 2005

<table>
<thead>
<tr>
<th>Zona</th>
<th>Sector</th>
<th>Nivel Freático (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tomasiri Bajo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sama Grande – Inclán</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poquera</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pampa El Pedregal Asoc. de Agricultores Fundo Belén y Asoc. Agroindustrial Fundo Canan</td>
</tr>
<tr>
<td>II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Los Pinos – Las Yaras</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La Banda – Cuilon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Haras de Capuli – El Golpe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pampa Molina – Sequina y Pampa Molina – Vituña</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cocal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Las Yaras Pueblo, Exsa y Munipata</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quebrada Las Brujas – Asoc. Dannificados Nueva Sama</td>
</tr>
</tbody>
</table>

• En el área de estudio no se han ejecutado pruebas de bombeo, debido que los pozos en su mayoría se encuentran no operativos y no reúnen las condiciones necesarias para realizar dicha evaluación.

• La red hidrogeoquímica (calidad del agua subterránea) del valle, está conformada por 25 pozos, de los cuales 7 están ubicados en el distrito de Sama – Inclán y 18 en Sama – Las Yaras.

• La conductividad eléctrica en el área de estudio varía mayormente de 1.67 a 8.73 mmhos/cm, valores que representan aguas de mediana a alta mineralización, encontrándose valores puntales de 20.81 mmhos/cm (aguas salobres) en el distrito de Sama – Las Yaras. Ver cuadro adjunto.
CARACTERÍSTICAS DE LA MORFOLOGÍA DE LA NAPA FREÁTICA – VALLE SAMÁ – 2005

<table>
<thead>
<tr>
<th>Zona</th>
<th>Sector</th>
<th>Año – 2005</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sentido Fluido</td>
</tr>
<tr>
<td>I</td>
<td>Sama Grande – Inclán</td>
<td>N - S</td>
</tr>
<tr>
<td></td>
<td>Poquera – Tomasiri Bajo</td>
<td>NE – SO</td>
</tr>
<tr>
<td>II</td>
<td>Los Pinos – Las Yaras</td>
<td>NE – SO</td>
</tr>
<tr>
<td></td>
<td>Exa, Para y La Banda</td>
<td>N - S</td>
</tr>
<tr>
<td></td>
<td>Munipata, Cuijona y El Golpe</td>
<td>NE-SO</td>
</tr>
<tr>
<td></td>
<td>Quebrada Las Brujas – Cocal</td>
<td>NE-SO</td>
</tr>
<tr>
<td></td>
<td>Pampa Molina – Sequina y Pampa Molina - Vituña</td>
<td>NE - SO</td>
</tr>
</tbody>
</table>

- El nivel de agua más superficial (0.83 – 1.54 m) se encuentra en los sectores Haras de Capuli y Tomasiri Bajo, mientras que los niveles más profundos, oscilan entre 12.86 y 14.83 m, encontrándose incluso hasta de 39.07 m en la Pampa de Sama. Ver cuadro adjunto.

PROFUNDIDAD DE LA NAPA FREÁTICA
VALLE SAMÁ – 2005

<table>
<thead>
<tr>
<th>Zona</th>
<th>Sector</th>
<th>Nivel Freático (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Tomasiri Bajo</td>
<td>1.54 – 2.23</td>
</tr>
<tr>
<td></td>
<td>Sama Grande – Inclán</td>
<td>9.56 – 12.86</td>
</tr>
<tr>
<td></td>
<td>Poquera</td>
<td>4.23 – 6.26</td>
</tr>
<tr>
<td></td>
<td>Pampa El Fedeval Asoc. de Agricultores Fundo Betén y Asoc. Agroindustrial Fundo Canán</td>
<td>37.60</td>
</tr>
<tr>
<td>II</td>
<td>Los Pinos – Las Yaras</td>
<td>5.69 – 7.34</td>
</tr>
<tr>
<td></td>
<td>La Banda - Cuijona</td>
<td>6.08 – 8.17</td>
</tr>
<tr>
<td></td>
<td>Haras de Capuli – El Golpe</td>
<td>0.83 – 2.26</td>
</tr>
<tr>
<td></td>
<td>Pampa Molina – Sequina y Pampa Molina - Vituña</td>
<td>5.82 – 6.48</td>
</tr>
<tr>
<td></td>
<td>Cocal</td>
<td>5.81</td>
</tr>
<tr>
<td></td>
<td>Las Yaras Pueblo, Exa y Munipata</td>
<td>3.86 – 14.83</td>
</tr>
<tr>
<td></td>
<td>Quebrada Las Brujas – Asoc. Dannificados Nueva Sama</td>
<td>20.94 – 39.07</td>
</tr>
</tbody>
</table>

- En el área de estudio no se han ejecutado pruebas de bombeo, debido que los pozos en su mayoría se encuentran no operativos y no reúnen las condiciones necesarias para realizar dicha evaluación.

- La red hidrogeoquímica (calidad del agua subterránea) del valle, está conformada por 25 pozos, de los cuales 7 están ubicados en el distrito de Sama – Inclán y 18 en Sama – Las Yaras.

- La conductividad eléctrica en el área de estudio varía mayormente de 1.67 a 8.73 mmmhos/cm, valores que representan aguas de mediana a alta mineralización, encontrándose valores puntuales de 20.81 mmmhos/cm (aguas salobres) en el distrito de Sama – Las Yaras. Ver cuadro adjunto.
CONDUCTIVIDAD ELÉCTRICA POR ZONAS
VALLE SAMÁ – 2005

<table>
<thead>
<tr>
<th>Zona</th>
<th>Sector</th>
<th>Conductividad Eléctrica (cambios/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Sama Grande – Incian</td>
<td>2.39 – 2.56</td>
</tr>
<tr>
<td></td>
<td>Pequera – Tomasiri Bajo</td>
<td>2.67 – 2.84</td>
</tr>
<tr>
<td></td>
<td>Pampa El Pedregal</td>
<td>0.69</td>
</tr>
<tr>
<td>III</td>
<td>Los Pinos – Las Yaras</td>
<td>2.00 – 4.49</td>
</tr>
<tr>
<td></td>
<td>La Banda – Cuilona</td>
<td>5.39 – 6.00</td>
</tr>
<tr>
<td></td>
<td>Haras de capuli – El Golpe</td>
<td>7.12 – 20.81</td>
</tr>
<tr>
<td></td>
<td>Pampa Molina – Sequina y Pampa Molina –</td>
<td>7.45 – 8.01</td>
</tr>
<tr>
<td></td>
<td>Vituňa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cocal y Agua Dulce – Vituňa</td>
<td>1.67 – 1.89</td>
</tr>
<tr>
<td></td>
<td>Exea – Municata</td>
<td>6.84 – 8.73</td>
</tr>
<tr>
<td></td>
<td>Quebrada de Las Brujas</td>
<td>2.06 – 2.95</td>
</tr>
</tbody>
</table>

- La dureza total de las aguas almacenadas en el acuífero mayormente fluctúa de 319.64 a 4,126.24 ppm de CaCO₃; valores que representan aguas muy duras. Ver cuadro adjunto.

VARIACIÓN DE LA DUREZA
VALLE SAMÁ – 2005

<table>
<thead>
<tr>
<th>Zona</th>
<th>Dureza (ppm)</th>
<th>Clasificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>606.71 – 863.22</td>
<td>Muy duras</td>
</tr>
<tr>
<td>II</td>
<td>319.64 – 4126.24</td>
<td>Muy duras</td>
</tr>
</tbody>
</table>

- En el área de estudio el pH, fluctúa entre 6.85 y 8.46, valores que de acuerdo a la clasificación representan mayormente aguas ácidas a alcalinas. Ver cuadro adjunto.

CLASES DE AGUA SEGÚN EL pH
VALLE SAMÁ – 2005

<table>
<thead>
<tr>
<th>Zona</th>
<th>pH</th>
<th>Clasificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>6.90 – 8.22</td>
<td>Ligeramente ácidas – alcalinas</td>
</tr>
<tr>
<td>II</td>
<td>6.85 – 8.46</td>
<td>Ligeramente ácidas – alcalinas</td>
</tr>
</tbody>
</table>

- Las familias hidrogeoquímicas que más predominan en el área de estudio son la sulfatada sódica y la sulfatada cálcica. Ver cuadro adjunto.

FAMILIAS HIDROGEOQUÍMICAS EN EL ÁREA DE ESTUDIO
VALLE SAMÁ – 2005

- La calidad de las aguas con fines de riego según la conductividad eléctrica, varía de permisible a calidad inadecuada para el riego. Ver cuadro adjunto.
CUADRO N° 9.12
CLASIFICACIÓN DEL AGUA SEGÚN LA C.E POR ZONAS

<table>
<thead>
<tr>
<th>Zona</th>
<th>Rango de C.F (minutos/cm)</th>
<th>Calidad de Las Aguas Subterráneas según Wilcox</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2.24 – 2.84</td>
<td>Dudosa</td>
</tr>
<tr>
<td>II</td>
<td>1.67 – 8.73</td>
<td>Permisible – Inadecuada</td>
</tr>
</tbody>
</table>

- Las aguas para riego según el RAS y la conductividad eléctrica, las dos zonas que conforman el acuífero, varían de fuera de clasificación (CFS₁,S₂,S₃) es decir altamente salinas y las de clase C₃S₁ y C₄S₁, el primero destaca en la zona II: distrito de Sama – Las Yaras, mientras que la segunda se distribuyen puntualmente en ambas zonas y pueden ser utilizadas para el riego bajo ciertas condiciones/Ver cuadro adjunto.

CLASIFICACIÓN DEL AGUA SEGÚN EL RAS Y LA C.E POR ZONAS
VALLE SAMA – 2005

<table>
<thead>
<tr>
<th>Zona</th>
<th>Clasificación de las Aguas</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>C₃S₁ y C₄S₁</td>
</tr>
<tr>
<td>II</td>
<td>C₄S₁,S₂,S₃,S₄,S₅,S₆,S₇</td>
</tr>
</tbody>
</table>

- Las aguas subterráneas en el valle de acuerdo al contenido de Boro, mayormente sobrepasan valores de 4.46 ppm, en consecuencia se clasifican como malas o no recomendables para el riego.

- Los análisis bacteriológicos realizados a las tres (3) muestras de agua de igual número de pozos, indican que los valores de los coliformes totales y fécales sobrepasan los límites permitibles; en consecuencia son aguas no potables. Ver cuadro adjunto.

RESULTADOS DE LOS ANÁLISIS MICROBiológICOS DE LAS AGUAS SUBTERRÁNEAS. VALLE SAMA – 2005

<table>
<thead>
<tr>
<th>Zona</th>
<th>Sector</th>
<th>IRHS N°</th>
<th>Coliformes Totales</th>
<th>Coliformes Fecales</th>
<th>Agua Potable</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Inclán</td>
<td>01</td>
<td>15 NMP/100 ml</td>
<td><3 NMP/100 ml</td>
<td><3</td>
</tr>
<tr>
<td></td>
<td>Inclán</td>
<td>02</td>
<td>1100 NMP/100 ml</td>
<td>500 NMP/100 ml</td>
<td><3</td>
</tr>
<tr>
<td>II</td>
<td>Las Yaras</td>
<td>29</td>
<td>1600 NMP/100 ml</td>
<td>1600 NMP/100 ml</td>
<td><3</td>
</tr>
</tbody>
</table>

- Los valores de los STD obtenidos en las dos zonas del valle (I y II) varían entre 1,209.60 y 5,587.20 ppm, valores que representan aguas de pésima calidad; aunque en ciertos lugares de la zona II se ubican valores entre 441.60 y 830.00 ppm y representan aguas de aceptable potabilidad. Ver cuadro adjunto.

VARIACIÓN DE LOS SÓLIDOS TOTALES DISUELTOs

<table>
<thead>
<tr>
<th>Zona</th>
<th>STD (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1529.60 – 1817.60 (441.60)</td>
</tr>
<tr>
<td>II</td>
<td>1209.60 – 5587.20 (600 – 830) y 13, 34, 40</td>
</tr>
</tbody>
</table>

080
11.0.0 CONCLUSIONES Y RECOMENDACIONES

11.1.0 Conclusiones

- En el valle Sama, el agua almacenada en el acuífero es mayormente de mala calidad, mineralizadas (salobres) con poca o nula permeabilidad.

- Se realizó el inventario de pozos, registrándose un total de 82,49 mayormente a tajo abierto (49) y en segundo término tubulares (6). Del total de pozos inventariados, 4 se encuentran operativos y son utilizados para uso industrial y doméstico. Además de regar 23 pozos para uso agroindustrial.

- El volumen total de agua explotada del acuífero fue de 28,565.40 m³, de los cuales 18,888.60 m³ corresponde a tajos abiertos; habiéndose utilizado mayormente en la industria 27,820.80 m³.

- El acuífero es de origen aluvial y de edad cuaternaria, presentando su flujo subterráneo una orientación principal de noreste a suroeste y una gradiente hidráulica que varía de 0.82 % a 2.22 %, llegando incluso a 2.96 %.

- Con los resultados del estudio se ha conformado las redes de control, tanto piezométrica como hidrogeoquímica constan de 25 pozos cada una, y con ambas se realizará el seguimiento cuantitativo y cualitativo del acuífero.

- Las aguas para riego según el RAS y la conductividad eléctrica, indican que están fuera de clasificación (CFS1, S2, S3), aunque en menor proporción existen de clase C1S1 y C4S1, que pueden ser utilizados en la agricultura bajo ciertas condiciones.

11.2.0 Recomendaciones

- Monitorear el acuífero (03 veces al año), para lo cual deben utilizar las redes de control; tanto piezométrico como hidrogeoquímico.

- Realizar un estudio del balance hídrico, que permitirá determinar la recarga del acuífero.

- Actualizar permanentemente los inventarios de fuentes de agua subterránea.

- En zonas rurales, las aguas subterráneas para uso poblacional deben ser tratadas (clasificación) antes de ser consumidas.

- En la Administración Técnica debe conformarse un área técnica de aguas subterráneas, con personal técnico permanente, el mismo que tendra como misión realizar el seguimiento y control del acuífero.

- Solicitar a las empresas dedicadas a realizar estudios hidrogeológicos y/o perforación de pozos, la licencia de autorización emitida por el INRENA y realizar perforaciones de piezómetros en ambas margenes del río Sama (Pampa) para el control piezométrico y calidad del agua.
12.0.0 BIBLIOGRAFÍA

- **ONERN**: “Inventario y Evaluación de Recursos Naturales de la Costa: Cuenca del río Sama”
- **GAYOSO M.**: “Estudio Hidrogeológico Preliminar del Valle Sama”
- **INGEMMET**: “Boletín Nº 17, Cuadrángulo Puemape, Chcope, Otuzco, Trujillo, Salaverry y Santa
- **HAROLD C.**: “Explotación de Aguas Subterráneas en la Costa del Perú”
- **SALIGNAC M.**: “Investigación de las aguas subterráneas de la zona de la Costa y Sierra”
- **DGA**: “Evaluación de los Recursos Hídricos del Valle Sama”.
- **ONERN**: “Inventario Nacional del Uso del Agua”
- **CHAVIMOCHE**: “Aprovechamiento de las Aguas Subterráneas en el Valle Sama”.
- **CUSTODIO E.**: “Hidrología Subterránea”
- **CASTANY G.**: “Prospección y Exploración de las Aguas Subterráneas”
ANEXO I
INVENTARIO DE FUENTES DE AGUA SUBTERRÁNEA

- Cuadros de características técnicas, medidas realizadas y volumen de explotación de los pozos.

AUTORIDAD NACIONAL DEL AGUA
<table>
<thead>
<tr>
<th>N.°</th>
<th>NOMBRE DEL POZO</th>
<th>COTA</th>
<th>CAPACIDAD MÁXIMA</th>
<th>EQUIPO DE BARREDO</th>
<th>NÚMERO DE ARTÍCULOS</th>
<th>C.G.</th>
<th>LUGAR</th>
<th>VACÍOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MINISTERIO DE AGRICULTURA (BARREDO HIDROÁREA)</td>
<td>119.00</td>
<td>62</td>
<td>7</td>
<td>D 60.00</td>
<td>12.50</td>
<td>8.1</td>
<td>6.00</td>
</tr>
<tr>
<td>2</td>
<td>MINISTERIO DE AGRICULTURA (BARREDO HIDROÁREA)</td>
<td>82.00</td>
<td>62</td>
<td>7</td>
<td>D 60.00</td>
<td>12.50</td>
<td>8.1</td>
<td>6.00</td>
</tr>
<tr>
<td>3</td>
<td>CARO Y GUIDO</td>
<td>44.00</td>
<td>72</td>
<td>7</td>
<td>60.00</td>
<td>14.75</td>
<td>8.16</td>
<td>6.00</td>
</tr>
<tr>
<td>4</td>
<td>FONDO DE LA SIERRA</td>
<td>44.00</td>
<td>72</td>
<td>7</td>
<td>60.00</td>
<td>14.75</td>
<td>8.16</td>
<td>6.00</td>
</tr>
<tr>
<td>5</td>
<td>ELLA R. CUEVA</td>
<td>44.00</td>
<td>72</td>
<td>7</td>
<td>60.00</td>
<td>14.75</td>
<td>8.16</td>
<td>6.00</td>
</tr>
<tr>
<td>6</td>
<td>ELVIRA CUEVA</td>
<td>44.00</td>
<td>72</td>
<td>7</td>
<td>60.00</td>
<td>14.75</td>
<td>8.16</td>
<td>6.00</td>
</tr>
<tr>
<td>7</td>
<td>SERGIO ESPIN</td>
<td>44.00</td>
<td>72</td>
<td>7</td>
<td>60.00</td>
<td>14.75</td>
<td>8.16</td>
<td>6.00</td>
</tr>
<tr>
<td>8</td>
<td>SERGIO ESPIN</td>
<td>44.00</td>
<td>72</td>
<td>7</td>
<td>60.00</td>
<td>14.75</td>
<td>8.16</td>
<td>6.00</td>
</tr>
<tr>
<td>9</td>
<td>SERGIO ESPIN</td>
<td>44.00</td>
<td>72</td>
<td>7</td>
<td>60.00</td>
<td>14.75</td>
<td>8.16</td>
<td>6.00</td>
</tr>
<tr>
<td>10</td>
<td>SERGIO ESPIN</td>
<td>44.00</td>
<td>72</td>
<td>7</td>
<td>60.00</td>
<td>14.75</td>
<td>8.16</td>
<td>6.00</td>
</tr>
<tr>
<td>11</td>
<td>SERGIO ESPIN</td>
<td>44.00</td>
<td>72</td>
<td>7</td>
<td>60.00</td>
<td>14.75</td>
<td>8.16</td>
<td>6.00</td>
</tr>
<tr>
<td>12</td>
<td>SERGIO ESPIN</td>
<td>44.00</td>
<td>72</td>
<td>7</td>
<td>60.00</td>
<td>14.75</td>
<td>8.16</td>
<td>6.00</td>
</tr>
<tr>
<td>13</td>
<td>SERGIO ESPIN</td>
<td>44.00</td>
<td>72</td>
<td>7</td>
<td>60.00</td>
<td>14.75</td>
<td>8.16</td>
<td>6.00</td>
</tr>
<tr>
<td>14</td>
<td>SERGIO ESPIN</td>
<td>44.00</td>
<td>72</td>
<td>7</td>
<td>60.00</td>
<td>14.75</td>
<td>8.16</td>
<td>6.00</td>
</tr>
<tr>
<td>NÚM.</td>
<td>HOMBRE DEL POZO</td>
<td>COTA</td>
<td>TIEMPO DE HONOR</td>
<td>PÁ PALO</td>
<td>RÁFICA</td>
<td>SÓLIDOS</td>
<td>PROF. (m)</td>
<td>TUBERÍA</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>------</td>
<td>----------------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>1</td>
<td>LA BAÑA - LAS YARAS</td>
<td>330.30</td>
<td>2003</td>
<td>TA</td>
<td>11.00</td>
<td>11.00</td>
<td>1.39</td>
<td>06.05.2003</td>
</tr>
<tr>
<td>2</td>
<td>VICENTE VICENTE</td>
<td>361.30</td>
<td>2000</td>
<td>TA</td>
<td>15.60</td>
<td>15.60</td>
<td>1.15</td>
<td>06.05.2003</td>
</tr>
<tr>
<td>3</td>
<td>LA BAÑA - LAS YARAS</td>
<td>313.30</td>
<td>2994</td>
<td>TA</td>
<td>10.60</td>
<td>10.60</td>
<td>1.20</td>
<td>06.05.2003</td>
</tr>
<tr>
<td>4</td>
<td>VICENTE VICENTE</td>
<td>296.00</td>
<td>T3</td>
<td>11.00</td>
<td>11.00</td>
<td>0.30</td>
<td>06.05.2003</td>
<td>46.60</td>
</tr>
<tr>
<td>5</td>
<td>VICENTE VICENTE</td>
<td>266.30</td>
<td>T3</td>
<td>10.60</td>
<td>10.60</td>
<td>0.30</td>
<td>06.05.2003</td>
<td>46.60</td>
</tr>
<tr>
<td>6</td>
<td>PAMPLA</td>
<td>28.00</td>
<td>TA</td>
<td>7.00</td>
<td>7.00</td>
<td>0.30</td>
<td>06.05.2003</td>
<td>46.60</td>
</tr>
<tr>
<td>7</td>
<td>PAMPLA</td>
<td>48.00</td>
<td>2000</td>
<td>TA</td>
<td>10.60</td>
<td>10.60</td>
<td>0.30</td>
<td>06.05.2003</td>
</tr>
<tr>
<td>8</td>
<td>PAMPLA</td>
<td>28.00</td>
<td>TA</td>
<td>10.60</td>
<td>10.60</td>
<td>0.30</td>
<td>06.05.2003</td>
<td>46.60</td>
</tr>
<tr>
<td>9</td>
<td>EL OLIVRE</td>
<td>272.30</td>
<td>TA</td>
<td>10.60</td>
<td>10.60</td>
<td>0.30</td>
<td>06.05.2003</td>
<td>46.60</td>
</tr>
<tr>
<td>10</td>
<td>VICENTE VICENTE</td>
<td>313.30</td>
<td>T3</td>
<td>11.00</td>
<td>11.00</td>
<td>0.30</td>
<td>06.05.2003</td>
<td>46.60</td>
</tr>
<tr>
<td>11</td>
<td>VICENTE VICENTE</td>
<td>296.00</td>
<td>T3</td>
<td>11.00</td>
<td>11.00</td>
<td>0.30</td>
<td>06.05.2003</td>
<td>46.60</td>
</tr>
<tr>
<td>12</td>
<td>VICENTE VICENTE</td>
<td>266.30</td>
<td>T3</td>
<td>11.00</td>
<td>11.00</td>
<td>0.30</td>
<td>06.05.2003</td>
<td>46.60</td>
</tr>
<tr>
<td>13</td>
<td>VICENTE VICENTE</td>
<td>28.00</td>
<td>TA</td>
<td>7.00</td>
<td>7.00</td>
<td>0.30</td>
<td>06.05.2003</td>
<td>46.60</td>
</tr>
<tr>
<td>14</td>
<td>VICENTE VICENTE</td>
<td>48.00</td>
<td>2000</td>
<td>TA</td>
<td>10.60</td>
<td>10.60</td>
<td>0.30</td>
<td>06.05.2003</td>
</tr>
<tr>
<td>15</td>
<td>VICENTE VICENTE</td>
<td>28.00</td>
<td>TA</td>
<td>7.00</td>
<td>7.00</td>
<td>0.30</td>
<td>06.05.2003</td>
<td>46.60</td>
</tr>
<tr>
<td>16</td>
<td>VICENTE VICENTE</td>
<td>48.00</td>
<td>2000</td>
<td>TA</td>
<td>10.60</td>
<td>10.60</td>
<td>0.30</td>
<td>06.05.2003</td>
</tr>
<tr>
<td>17</td>
<td>VICENTE VICENTE</td>
<td>28.00</td>
<td>TA</td>
<td>7.00</td>
<td>7.00</td>
<td>0.30</td>
<td>06.05.2003</td>
<td>46.60</td>
</tr>
<tr>
<td>18</td>
<td>VICENTE VICENTE</td>
<td>48.00</td>
<td>2000</td>
<td>TA</td>
<td>10.60</td>
<td>10.60</td>
<td>0.30</td>
<td>06.05.2003</td>
</tr>
<tr>
<td>19</td>
<td>VICENTE VICENTE</td>
<td>28.00</td>
<td>TA</td>
<td>7.00</td>
<td>7.00</td>
<td>0.30</td>
<td>06.05.2003</td>
<td>46.60</td>
</tr>
<tr>
<td>20</td>
<td>VICENTE VICENTE</td>
<td>48.00</td>
<td>2000</td>
<td>TA</td>
<td>10.60</td>
<td>10.60</td>
<td>0.30</td>
<td>06.05.2003</td>
</tr>
<tr>
<td>21</td>
<td>VICENTE VICENTE</td>
<td>28.00</td>
<td>TA</td>
<td>7.00</td>
<td>7.00</td>
<td>0.30</td>
<td>06.05.2003</td>
<td>46.60</td>
</tr>
<tr>
<td>22</td>
<td>VICENTE VICENTE</td>
<td>48.00</td>
<td>2000</td>
<td>TA</td>
<td>10.60</td>
<td>10.60</td>
<td>0.30</td>
<td>06.05.2003</td>
</tr>
<tr>
<td>23</td>
<td>VICENTE VICENTE</td>
<td>28.00</td>
<td>TA</td>
<td>7.00</td>
<td>7.00</td>
<td>0.30</td>
<td>06.05.2003</td>
<td>46.60</td>
</tr>
<tr>
<td>24</td>
<td>VICENTE VICENTE</td>
<td>48.00</td>
<td>2000</td>
<td>TA</td>
<td>10.60</td>
<td>10.60</td>
<td>0.30</td>
<td>06.05.2003</td>
</tr>
<tr>
<td>NOMBRE DE POZO</td>
<td>RUST</td>
<td>COFA</td>
<td>TERRIZO</td>
<td>PROF. N</td>
<td>PROF. A</td>
<td>DIÁMETRO</td>
<td>MOTOR</td>
<td>BOILIÓN</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>------------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>1 Llano de Almeida</td>
<td>P</td>
<td>150</td>
<td>108</td>
<td>150</td>
<td>150</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2 Llano de Almeida</td>
<td>P</td>
<td>170</td>
<td>108</td>
<td>170</td>
<td>150</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

MINISTERIO DE AGRICULTURA
INSTITUTO NACIONAL DE RECURSOS NATURALES - INRENA
CARACTERÍSTICAS TÉCNICAS, MEDICIONES Y VOLUMENES DE EXPLOTACIÓN DE POZOS

CÓDIGO: 23-01-05

DISTRITO: SAMA - LAS YARAS
ANEXO II
RESERVORIO ACUÍFERO

- Cuadros de la red piezométrica
<table>
<thead>
<tr>
<th>IRHS</th>
<th>PROPIETARIO</th>
<th>SECTOR</th>
<th>COTA DE TERRENO</th>
<th>PROF DEL N.E (m)</th>
<th>COTA DEL N.E (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23/01/09</td>
<td>MINISTERO DE AGRICULTURA (AGUA POTABLE INCLAN)</td>
<td>INCLAN</td>
<td>510.00</td>
<td>12.86</td>
<td>497.14</td>
</tr>
<tr>
<td>2</td>
<td>MINISTERO DE AGRICULTURA (FRANCISCO SOTILLO CHAVEZ)</td>
<td>POQUIRA</td>
<td>446.50</td>
<td>6.26</td>
<td>440.24</td>
</tr>
<tr>
<td>3</td>
<td>CARLOS CUADROS LAZO</td>
<td>POQUIRA</td>
<td>440.20</td>
<td>4.23</td>
<td>435.97</td>
</tr>
<tr>
<td>6</td>
<td>VICTOR PORTUGAL YZAGUIRRE</td>
<td>BAJO TOMASIRI</td>
<td>422.50</td>
<td>2.23</td>
<td>420.27</td>
</tr>
<tr>
<td>7</td>
<td>GERARDO ESCOBAR CUSI</td>
<td>INCLAN</td>
<td>452.80</td>
<td>9.56</td>
<td>443.24</td>
</tr>
<tr>
<td>8</td>
<td>EDUARDO PORTUGAL YZAGUIRRE</td>
<td>BAJO TOMASIRI</td>
<td>432.50</td>
<td>1.54</td>
<td>430.96</td>
</tr>
<tr>
<td>13</td>
<td>ASOCIACION DE AGRICULTORES FUNDO BELÉN</td>
<td>ASOC. DE AGRICULTORES FUNDO BELÉN</td>
<td>550.00</td>
<td>37.60</td>
<td>512.40</td>
</tr>
<tr>
<td>IRHS 23/01/05</td>
<td>PROPIETARIO</td>
<td>SECTOR</td>
<td>COTA DE TERRENO</td>
<td>PROF DEL N.E (m)</td>
<td>COTA DEL N.E (m)</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>--------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>1</td>
<td>LA BANDA - LAS YARAS</td>
<td>LA BANDA</td>
<td>350.60</td>
<td>6.08</td>
<td>344.52</td>
</tr>
<tr>
<td>2</td>
<td>JUAN GONZALO GUILLEN VELARDE</td>
<td>LAS YARAS</td>
<td>381.50</td>
<td>5.69</td>
<td>375.81</td>
</tr>
<tr>
<td>3</td>
<td>LA BANDA - LAS YARAS</td>
<td>ASOC. DE DANIFICADOS NUEVA SAMA</td>
<td>375.20</td>
<td>39.07</td>
<td>336.13</td>
</tr>
<tr>
<td>4</td>
<td>HILARIO JUAREZ VILLEGAS</td>
<td>LOS PINOS</td>
<td>396.70</td>
<td>5.87</td>
<td>390.83</td>
</tr>
<tr>
<td>5</td>
<td>WALTER VELASQUEZ LIENDO</td>
<td>LAS YARAS</td>
<td>363.30</td>
<td>7.34</td>
<td>355.96</td>
</tr>
<tr>
<td>6</td>
<td>PAMPA MOLINA</td>
<td>PAMPA MOLINA - SIQUINA</td>
<td>25.00</td>
<td>5.52</td>
<td>19.18</td>
</tr>
<tr>
<td>7</td>
<td>PAMPA MOLINA</td>
<td>PAMPA MOLINA - VITURA</td>
<td>48.50</td>
<td>6.48</td>
<td>42.02</td>
</tr>
<tr>
<td>10</td>
<td>FELIX MAKANI VELASQUEZ</td>
<td>EL GOLPE</td>
<td>259.90</td>
<td>2.26</td>
<td>257.64</td>
</tr>
<tr>
<td>11</td>
<td>ELIAS ARCCAYA PONCO</td>
<td>LAS YARAS</td>
<td>376.80</td>
<td>6.58</td>
<td>370.22</td>
</tr>
<tr>
<td>13</td>
<td>ELFRI DUBNAS</td>
<td>CUILONA</td>
<td>317.70</td>
<td>8.17</td>
<td>309.53</td>
</tr>
<tr>
<td>16</td>
<td>QUEBRADA LAS BRUJAS</td>
<td>QUEBRADA LAS BRUJAS</td>
<td>150.00</td>
<td>20.94</td>
<td>129.06</td>
</tr>
<tr>
<td>18</td>
<td>KL 14</td>
<td>HARAS CAPULI</td>
<td>275.00</td>
<td>0.83</td>
<td>274.17</td>
</tr>
<tr>
<td>20</td>
<td>MUNIPATA</td>
<td>MUNIPATA</td>
<td>320.80</td>
<td>3.86</td>
<td>316.94</td>
</tr>
<tr>
<td>29</td>
<td>EXSA S A</td>
<td>LAS YARAS</td>
<td>382.80</td>
<td>13.74</td>
<td>369.06</td>
</tr>
<tr>
<td>31</td>
<td>QUEBRADA LAS BRUJAS</td>
<td>QUEBRADA LAS BRUJAS</td>
<td>162.90</td>
<td>21.63</td>
<td>141.27</td>
</tr>
<tr>
<td>32</td>
<td>GUILLERMO SANTANA</td>
<td>COCAL</td>
<td>112.80</td>
<td>5.81</td>
<td>106.99</td>
</tr>
<tr>
<td>35</td>
<td>MUNIPATA</td>
<td>MUNIPATA</td>
<td>337.50</td>
<td>8.24</td>
<td>329.26</td>
</tr>
<tr>
<td>39</td>
<td>MUNICIPALIDAD DE SAMA - LAS YARAS</td>
<td>LAS YARAS</td>
<td>399.00</td>
<td>14.83</td>
<td>384.17</td>
</tr>
</tbody>
</table>
ANEXO III
HIDROGEOQUÍMICA

- Cuadros de la red hidrogeoquímica
- Cuadros de resultados de los análisis físico-químicos

AUTORIDAD NACIONAL DEL AGUA
ISOCONDUCTIVIDAD
VALLE SAMA

DISTRITO: SAMA - INCLAN

<table>
<thead>
<tr>
<th>IRHS</th>
<th>PROPIETARIO</th>
<th>SECTOR</th>
<th>ANALISIS FISICO</th>
</tr>
</thead>
<tbody>
<tr>
<td>23/01/09</td>
<td>MINISTERO DE AGRICULTURA (AGUA POTABLE INCLAN)</td>
<td>INCLAN</td>
<td>2.56 7.15 1638.40</td>
</tr>
<tr>
<td>2</td>
<td>MINISTERO DE AGRICULTURA (FRANCISCO SOTILLO CHAVEZ)</td>
<td>POQUESA</td>
<td>2.45 7.15 1568.00</td>
</tr>
<tr>
<td>3</td>
<td>CARLOS CUADROS LAZO</td>
<td>POQUESA</td>
<td>2.84 7.20 1817.60</td>
</tr>
<tr>
<td>6</td>
<td>VICTOR PORTUGAL YZAGUIRRE</td>
<td>TOMASRI BAJO</td>
<td>2.45 6.90 1568.00</td>
</tr>
<tr>
<td>7</td>
<td>GERARDO ESCOBAR CUSH</td>
<td>INCLAN</td>
<td>2.39 7.15 1529.60</td>
</tr>
<tr>
<td>8</td>
<td>EDUARDO PORTUGAL YZAGUIRRE</td>
<td>TOMASRI BAJO</td>
<td>2.24 7.15 1120.00</td>
</tr>
<tr>
<td>13</td>
<td>ASOCIACIÓN DE AGRICULTORES FUNDO BELÉN</td>
<td>ASOC. DE AGRICULTORES FUNDO BELÉN</td>
<td>0.69 8.22 441.60</td>
</tr>
</tbody>
</table>
ISOCONDUCTIVIDAD
VALLE SAMA

DISTRITO: SAMA - LAS YARAS

<table>
<thead>
<tr>
<th>IRHS</th>
<th>PROPIETARIO</th>
<th>SECTOR</th>
<th>ANALISIS FISICO</th>
</tr>
</thead>
<tbody>
<tr>
<td>23/01/05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>LA BANDA - LAS YARAS</td>
<td>LA BANDA</td>
<td>5.39 7.60 3449.60</td>
</tr>
<tr>
<td>2</td>
<td>JUAN GONZALO GUILLEN VELARDE</td>
<td>LAS YARAS</td>
<td>2.84 7.49 1817.60</td>
</tr>
<tr>
<td>4</td>
<td>HILARIO JUAREZ VILLEGAS</td>
<td>LOS PINOS</td>
<td>2.39 7.89 1780.00</td>
</tr>
<tr>
<td>5</td>
<td>WALTER VELASQUEZ LINDO</td>
<td>LAS YARAS</td>
<td>1.20 7.14 600.00</td>
</tr>
<tr>
<td>6</td>
<td>PAMPA MOLINA</td>
<td>PAMPA MOLINA - SEQUINA</td>
<td>7.45 7.29 4768.00</td>
</tr>
<tr>
<td>7</td>
<td>PAMPA MOLINA</td>
<td>PAMPA MOLINA - VITIÑA</td>
<td>8.01 6.95 5126.40</td>
</tr>
<tr>
<td>10</td>
<td>FELIX MAMANI VELASQUEZ</td>
<td>EL GOLPE</td>
<td>7.12 6.85 4556.80</td>
</tr>
<tr>
<td>11</td>
<td>ELIAS ARCAZA PONGO</td>
<td>LAS YARAS</td>
<td>2.00 8.46 1280.00</td>
</tr>
<tr>
<td>13</td>
<td>ELFRU DUEÑAS</td>
<td>CUILONA</td>
<td>6.00 7.20 3840.00</td>
</tr>
<tr>
<td>16</td>
<td>QUEBRADA LAS BRUJAS</td>
<td>QUEBRADA LAS BRUJAS</td>
<td>2.95 8.10 1888.00</td>
</tr>
<tr>
<td>18</td>
<td>KL 14</td>
<td>HARAS CAPULI</td>
<td>20.81 7.00 13318.40</td>
</tr>
<tr>
<td>20</td>
<td>MUNIPATA</td>
<td>MUNIPATA</td>
<td>8.73 7.90 5587.20</td>
</tr>
<tr>
<td>29</td>
<td>EXSA S.A.</td>
<td>EX QUIMICA SOL</td>
<td>6.84 7.62 4377.60</td>
</tr>
<tr>
<td>31</td>
<td>QUEBRADA LAS BRUJAS</td>
<td>QUEBRADA LAS BRUJAS</td>
<td>2.06 7.60 1318.40</td>
</tr>
<tr>
<td>32</td>
<td>GUILLERMO SANTANA</td>
<td>COCAL</td>
<td>1.67 7.14 830.00</td>
</tr>
<tr>
<td>35</td>
<td>MUNIPATA</td>
<td>MUNIPATA</td>
<td>8.22 8.00 5260.80</td>
</tr>
<tr>
<td>39</td>
<td>MUNICIPALIDAD DE SAMA - LAS YARAS</td>
<td>LAS YARAS</td>
<td>4.49 7.50 2240.00</td>
</tr>
<tr>
<td>P01</td>
<td>JOSÉ HUANCA MAMANI</td>
<td>AGUA DULCE - VITIÑA</td>
<td>1.89 7.28 1209.60</td>
</tr>
</tbody>
</table>
MINISTERIO DE AGRICULTURA
INSTITUTO NACIONAL DE RECURSOS NATURALES

RESULTADOS DE LOS ANÁLISIS FÍSICO QUÍMICOS DE LAS AGUAS SUBTERRÁNEAS - VALLE SAMA
DISTrito: SAMA - INCLÁN

<table>
<thead>
<tr>
<th>Nº</th>
<th>IRHS 23/01/09</th>
<th>CE 25 °C</th>
<th>pH</th>
<th>Ca (mg/l)</th>
<th>Mg (mg/l)</th>
<th>Na (mg/l)</th>
<th>K (mg/l)</th>
<th>CO₃ (mg/l)</th>
<th>HCO₃ (mg/l)</th>
<th>NH₄ (mg/l)</th>
<th>SO₄ (mg/l)</th>
<th>Cl (mg/l)</th>
<th>DUREZA (ppm)</th>
<th>BORO (ppm)</th>
<th>RAS (ppm)</th>
<th>CLASIFICACIÓN HIDROGEOQUÍMICA</th>
<th>CLASIFICACIÓN PARA RIEGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.56</td>
<td>7.15</td>
<td>234.00</td>
<td>43.92</td>
<td>279.91</td>
<td>24.96</td>
<td>0.00</td>
<td>229.36</td>
<td>0.00</td>
<td>661.44</td>
<td>355.36</td>
<td>1638.40</td>
<td>769.54</td>
<td>8.07</td>
<td>4.16</td>
<td>CLORURADA CÁLCICA</td>
<td>C4-S1</td>
</tr>
<tr>
<td>2</td>
<td>2.45</td>
<td>7.15</td>
<td>251.00</td>
<td>45.84</td>
<td>232.53</td>
<td>22.62</td>
<td>0.00</td>
<td>188.49</td>
<td>0.00</td>
<td>643.20</td>
<td>360.33</td>
<td>1568.00</td>
<td>820.14</td>
<td>7.75</td>
<td>3.53</td>
<td>CLORURADA SÓDICA</td>
<td>C4-S1</td>
</tr>
<tr>
<td>3</td>
<td>2.84</td>
<td>7.20</td>
<td>259.00</td>
<td>51.36</td>
<td>299.00</td>
<td>23.40</td>
<td>0.00</td>
<td>207.40</td>
<td>0.00</td>
<td>625.92</td>
<td>465.41</td>
<td>1817.60</td>
<td>863.22</td>
<td>9.50</td>
<td>4.43</td>
<td>BICARBONATADA CÁLCICA</td>
<td>C4-S1</td>
</tr>
<tr>
<td>6</td>
<td>2.45</td>
<td>6.90</td>
<td>184.60</td>
<td>34.56</td>
<td>305.90</td>
<td>21.84</td>
<td>0.00</td>
<td>18.91</td>
<td>0.00</td>
<td>489.60</td>
<td>530.73</td>
<td>1568.00</td>
<td>606.71</td>
<td>8.76</td>
<td>5.40</td>
<td>COLORURADA SÓDICA</td>
<td>C4-S1</td>
</tr>
<tr>
<td>7</td>
<td>2.39</td>
<td>7.15</td>
<td>237.60</td>
<td>46.92</td>
<td>235.06</td>
<td>21.45</td>
<td>0.00</td>
<td>175.07</td>
<td>0.00</td>
<td>608.64</td>
<td>365.30</td>
<td>1529.60</td>
<td>791.08</td>
<td>8.29</td>
<td>3.64</td>
<td>BICARBONATADA SÓDICA</td>
<td>C4-S1</td>
</tr>
<tr>
<td>13</td>
<td>0.69</td>
<td>8.22</td>
<td>21.80</td>
<td>3.12</td>
<td>124.89</td>
<td>4.29</td>
<td>0.00</td>
<td>120.17</td>
<td>0.00</td>
<td>130.56</td>
<td>66.39</td>
<td>441.60</td>
<td>67.64</td>
<td>0.57</td>
<td>6.61</td>
<td>COLORURADA SÓDICA</td>
<td>C2-S1</td>
</tr>
<tr>
<td>Nº IRHS</td>
<td>CE 25°C</td>
<td>pH</td>
<td>CATIONES</td>
<td>ANIONES</td>
<td>STD</td>
<td>DUREZA TOTAL ppm</td>
<td>BORO ppm</td>
<td>RAS ppm</td>
<td>CLASIFICACIÓN HIDROGEOQUÍMICA</td>
<td>CLASIFICACIÓN PARA RIEGO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>----</td>
<td>----------</td>
<td>---------</td>
<td>-----</td>
<td>------------------</td>
<td>----------</td>
<td>--------</td>
<td>-------------------------------</td>
<td>-----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23/01/05</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5.39</td>
<td>7.60</td>
<td>345.40</td>
<td>48.36</td>
<td>828.46</td>
<td>22.62</td>
<td>0.00</td>
<td>275.72</td>
<td>0.25</td>
<td>1121.76</td>
<td>976.25</td>
<td>3449.60</td>
<td>1067.13</td>
<td>11.20</td>
<td>11.04</td>
<td>CLORURADA CÁLICA</td>
<td>CFS-S2</td>
</tr>
<tr>
<td>2</td>
<td>2.84</td>
<td>7.49</td>
<td>226.60</td>
<td>38.04</td>
<td>344.54</td>
<td>19.11</td>
<td>0.00</td>
<td>193.98</td>
<td>0.05</td>
<td>608.64</td>
<td>465.41</td>
<td>1817.60</td>
<td>726.45</td>
<td>9.00</td>
<td>5.36</td>
<td>CLORURADA SÓDICA</td>
<td>C4-S1</td>
</tr>
<tr>
<td>6</td>
<td>7.45</td>
<td>7.28</td>
<td>599.80</td>
<td>109.08</td>
<td>920.92</td>
<td>44.85</td>
<td>0.00</td>
<td>248.88</td>
<td>0.03</td>
<td>1006.56</td>
<td>1902.09</td>
<td>4768.00</td>
<td>1957.91</td>
<td>18.38</td>
<td>9.06</td>
<td>BICARBONATADA CÁLICA</td>
<td>CFS-S1</td>
</tr>
<tr>
<td>7</td>
<td>8.01</td>
<td>6.95</td>
<td>668.60</td>
<td>126.36</td>
<td>1100.09</td>
<td>52.26</td>
<td>0.00</td>
<td>265.35</td>
<td>0.04</td>
<td>1339.00</td>
<td>2039.83</td>
<td>5126.40</td>
<td>2202.40</td>
<td>19.13</td>
<td>10.20</td>
<td>CLORURADA SÓDICA</td>
<td>CFS-S2</td>
</tr>
<tr>
<td>10</td>
<td>7.12</td>
<td>6.85</td>
<td>670.60</td>
<td>145.56</td>
<td>825.01</td>
<td>55.77</td>
<td>0.00</td>
<td>308.66</td>
<td>0.06</td>
<td>1621.44</td>
<td>1514.08</td>
<td>4556.80</td>
<td>2287.57</td>
<td>23.04</td>
<td>7.51</td>
<td>BICARBONATADA CÁLICA</td>
<td>CFS-S1</td>
</tr>
<tr>
<td>11</td>
<td>2.00</td>
<td>8.46</td>
<td>192.40</td>
<td>35.04</td>
<td>200.33</td>
<td>22.62</td>
<td>0.00</td>
<td>70.76</td>
<td>0.01</td>
<td>545.76</td>
<td>290.39</td>
<td>1280.00</td>
<td>628.25</td>
<td>7.75</td>
<td>3.48</td>
<td>COLORURADA SÓDICA</td>
<td>C3-S1</td>
</tr>
<tr>
<td>13</td>
<td>6.00</td>
<td>7.20</td>
<td>560.80</td>
<td>111.96</td>
<td>537.51</td>
<td>56.94</td>
<td>0.00</td>
<td>300.73</td>
<td>0.18</td>
<td>1286.88</td>
<td>1038.73</td>
<td>3840.00</td>
<td>1872.24</td>
<td>19.53</td>
<td>5.41</td>
<td>BICARBONATADA SÓDICA</td>
<td>CFS-S1</td>
</tr>
<tr>
<td>16</td>
<td>2.95</td>
<td>8.10</td>
<td>182.20</td>
<td>26.16</td>
<td>416.07</td>
<td>19.50</td>
<td>0.00</td>
<td>92.72</td>
<td>0.17</td>
<td>576.48</td>
<td>555.58</td>
<td>1888.00</td>
<td>865.63</td>
<td>6.30</td>
<td>7.61</td>
<td>CLORURADA SÓDICA</td>
<td>C4-S1</td>
</tr>
<tr>
<td>18</td>
<td>20.81</td>
<td>7.00</td>
<td>1014.00</td>
<td>379.92</td>
<td>2990.07</td>
<td>186.03</td>
<td>0.00</td>
<td>480.68</td>
<td>0.09</td>
<td>1526.88</td>
<td>6031.81</td>
<td>13318.40</td>
<td>4126.24</td>
<td>30.36</td>
<td>19.65</td>
<td>BICARBONATADA CÁLICA</td>
<td>CFS-S3</td>
</tr>
<tr>
<td>20</td>
<td>8.73</td>
<td>7.90</td>
<td>631.80</td>
<td>116.40</td>
<td>1250.05</td>
<td>44.46</td>
<td>0.00</td>
<td>147.62</td>
<td>1.56</td>
<td>1360.80</td>
<td>2240.05</td>
<td>5587.20</td>
<td>2068.63</td>
<td>11.69</td>
<td>11.96</td>
<td>COLORURADA SÓDICA</td>
<td>CFS-S2</td>
</tr>
<tr>
<td>29</td>
<td>6.84</td>
<td>7.62</td>
<td>497.00</td>
<td>136.20</td>
<td>775.10</td>
<td>33.93</td>
<td>0.00</td>
<td>245.83</td>
<td>0.05</td>
<td>1322.88</td>
<td>1289.01</td>
<td>4377.60</td>
<td>1813.62</td>
<td>17.04</td>
<td>7.92</td>
<td>BICARBONATADA SÓDICA</td>
<td>CFS-S1</td>
</tr>
<tr>
<td>31</td>
<td>2.06</td>
<td>7.00</td>
<td>97.60</td>
<td>18.00</td>
<td>312.57</td>
<td>19.50</td>
<td>0.00</td>
<td>58.56</td>
<td>0.24</td>
<td>382.08</td>
<td>395.47</td>
<td>1318.40</td>
<td>319.64</td>
<td>4.90</td>
<td>7.61</td>
<td>CLORURADA SÓDICA</td>
<td>C3-S1</td>
</tr>
<tr>
<td>35</td>
<td>8.22</td>
<td>8.00</td>
<td>511.40</td>
<td>74.52</td>
<td>1175.07</td>
<td>25.74</td>
<td>0.00</td>
<td>175.07</td>
<td>1.25</td>
<td>1399.68</td>
<td>1764.35</td>
<td>5260.80</td>
<td>1592.18</td>
<td>13.13</td>
<td>12.82</td>
<td>BICARBONATADA CÁLICA</td>
<td>CFS-S2</td>
</tr>
<tr>
<td>POI</td>
<td>1.89</td>
<td>7.28</td>
<td>127.80</td>
<td>19.20</td>
<td>255.53</td>
<td>15.21</td>
<td>0.00</td>
<td>197.03</td>
<td>0.07</td>
<td>340.80</td>
<td>307.79</td>
<td>1209.60</td>
<td>400.30</td>
<td>4.46</td>
<td>5.56</td>
<td>COLORURADA SÓDICA</td>
<td>C3-S1</td>
</tr>
</tbody>
</table>